
October,
1990

Volume 1,
No.8

The Journal of Apple II Programming $4.00

Safe X (CMDs) for HyperStudio™

Adventure

Special
Introductory
Price $9.95

The Devil's Demise - is an exceptional graphic
adventure game that comes complete on a single 3.5
inch disk with on-screen instructions, a map, demo
play option, and dungeons which were too vast and
expansive to fit on 5.25" disks.

The object is to search out and destroy the evil
WRAITH to save the mythical island of Araithia. To
succeed at this quest the adventurer must fend off many
monsters, learn magic spells, and buy weapons and
armor to defeat the evil WRAITII.

An excellent adventure for Apple lie, lie, and liGS
computers with a 3.5" drive. It has a retail price of
$14.95, but you can take advantage of our introductory
offer and order it direct from Nite Owl for only $9.95
before 12/31/90.

"I have never

in my life seen

a better way to

spend such a

modest amount

..J....J....J Font CoUection ..J..J..J

The A2-Central staff has spent years searching out and
compiling hundreds of l!GS fonts. These fonts are
packed onto eight 3.5 inch disks. They work with l!GS
paint, draw, and word processing programs. Includes a
program to unpack them, an Appleworks data file that
lists the available fonts, and picture files that let you
view the various fonts.

This collection includes over 8Mb of fonts. Due to the
large volume of this collection, a hard disk is highly
recommended. Only $39 for this valuable collection.

In Depth:

Close Out!
It was more than just "Bad News" when Tech Alliance

ceased publication of Call -A.P.P.L.E. magazine. It was a
major loss of technical information and support for the
Apple II. In order to help keep some of this information
available, we have acquired the last remaining copies of
their manual, "All About Applesoft - In Depth".

It is written for the highly technical, Applesoft and
Assembly language programmer. It includes a list of
internal entry points in the Applesoft ROM and describes
how to use them. This classic is now out of print, in short
supply, and available from Nite Owl for $20. Limit 1

Keep it Cool and Quiet
When you start adding more memory and additional

interface cards, your liGS computer can overheat. This can
cause malfunctions and shorten the life of your computer.

The GS Super Cooler fan fastens to the internal power
of money", supply and is powered from the standard fan jack on the

motherboard. They are easily installed, cause no audio line

I

writes Neil Shapiro in his review of WRAITH interference, and they are quieter and less expensive than
in the July 1990 issue of Nibble magazine. other alternatives. They are available for $24 each.

Call: (913) 362-9898
----------------------------~~~~~~~~~-~~~~~~----~

FAX: (913) 362-5798 --------------,

Satisfaction Guaranteed: If you are not completely
satisfied with anything you order from Nite Owl, return
it within 30 days for a prompt refund or replacement.

Nite Owl Productions 1
5734 Lamar A venue A I
Mission, KS 66202-2646 I _____________ _j

Ship to:

Kits

Nite Owl Journal 3.5

WRAITH Adventure

GS Super Cooler Fan

Font Collection

Please include $2 shipping and
handling I $5 for overseas orders.

Kansas residents sales tax.

$ 9.95

$24.00

$39.00

Prices may Change Without Notice

8/ILCS

Copyright (C) 1990, Ariel Publishing, Most Rights Reserved

Publisher & Editor-in-Chief
Apple llgs Editor
Classic Apple Editor
Contributing Editors

Subscription Services

Ross W. Lambert
Eric Mueller
Jerry Kindall
Jay Jennings
David Gauger
Steve Stephenson
Mike Westerfield
Cecil Fretwell
Tamara Lambert
Karen Redfield

Subscription prices in US dollars:

• magazine
• monthly disk

1 year $32
1 year $69.95

2 years $60
2 years $129

Canada and Mexico add $5 per year per product ordered.
Non-North American orders add $15 per year per product
ordered.

WARRANTY and LIMITATION of LIABILITY

Ariel Publishing, Inc. warrants that the information in 8116 is
correct and useful to somebody somewhere. Any subscriber
may ask for a full refund of their last subscription payment at
any time. Ariel Publishing's LIABILITY FOR ERRORS AND
OMISSIONS IS LIMITED TO THIS PUBLICATION'S
PURCHASE PRICE. In no case shall Ariel Publishing, Inc.
Ross W. Lambert, the editorial staff, or article authors be
liable for any incidental or consequential damages, nor for
ANY damages in excess of the fees paid by a subscriber.

Subscribers are free to use program source code printed
herein in their own compiled, stand-alone applications with
no licensing application or fees required. Ariel Publishing
prohibits the distribution of source code printed in our pages
without our prior permission.

Direct all correspondence to: Ariel Publishing, Inc., P.O. Box
398, Pateros, WA 98846 (509) 923-2249 (voice) or (509}
689-3136 (fax).

Apple, Apple II, llgs, lie, IIC+, lie, AppleTalk, and Macintosh
are all registered trademarks of Apple Computers, Inc.

We here at Ariel Publishing freely admit our shortcomings,
but nevertheless strive to bring glory to the Lord Jesus
Christ.

The
Publisher's
Pen
by Ross W. Lambert

More Conferencing, C Cecil Code,
& Marketing 101

I was particularly impressed with Dennis Dams'
summary, report, and analysis of the A2-Central
Developer's Conference. If you want to read an ab
solutely incisive review of it all, call A2-Central
(913/469-6502) and ask for a copy of their Septem
ber issue.

I was insanely jealous and in awe of Dennis's abili
ty to recall detail (and stay awake) until I remem
bered that he could probably review the video tapes
of everything.

More C From Cecil

When Cecil Fretwell gets into something, he really
gets into something. Not only did he translate
"Hello World" from the Lichty and Eyes book
(Prograrruning the Apple JIGS in Assembly Language)
into C, but he has now also translated Sandy Moss
berg's "Skeleton Desktop Application" from our late,
great forebear, CALL A.P.P.L.E. Our spiritual par
ent magazine ran parts one through three of
Sandy's five part series. To my knowledge, Cecil's
disk is the only place to find parts four and five .
Plus it serves as a wonderful reference for anyone
learning C. This new disk is available directly from
Cecil for a mere $20. Write Uncle Cecil at: 2605
Highview Avenue, Waterloo, Iowa, 50702.

Marketing for Small Developers Who
Want to Survive to be Big Developers

I've seen 'em come and I've seen 'em go. And you
wanna know what? They mostly go.

With that little homily as background, let's begin

8/1L6

my promised foray into marketing.

You may wonder, at first, why I'd have any inclina
tion to share my "secrets". Well, first of all, there
really aren't any secrets. As Solomon said about
2500 years ago, 'There is nothing new under the
sun."

Combine that with the fact that most folks think
I'm off my rocker,
anyway, and I

• It is better to be underestimated than overesti
mated. People are more likely to help you if A) they
like you, and B) they don't perceive you as a threat.
Acting the big shot can impress the mush brains in
the short run. It'll make you broke in the long run.

• Hold your tongue, the wheel turns. That's not
to say that you
shouldn't stand

don't have much
to wony about.

And if that is not
enough, it is im
portant to the
Apple II market
that developers of

" ... it is important to the Apple II
market that developers of really good

products also know how to make
money at it."

firm on your
principles, but
that can be done
without spouting
off. Bill Gates
can spout off and
get away with it.
As far as I can
ascertain, he's
the only software
developer

really good prod-
ucts also know
how to make
money at it. The market itself will pass judgement
when you combine excellent marketing with a
crummy product. I just want to prevent good prod
ucts from disappearing due to poor marketing.

Advice You'll Probably Ignore

I'd like to begin here in the same manner I did in
Kansas: by offering some general purpose, seeming
ly unrelated bits of advice. This may seem pretty
bizarre, but I honestly think it is the most valuable
portion of my marketing presentations. Of course,
the offerer of unsolicited advice usually does over
estimate its worth!

Here are the bits, in no particular order ...

• Read the book of John in the New Testament.
Religious considerations aside, it is an excellent
treatise on starting a worldwide movement on a tiny
budget. Although my born-again brethren will
probably call me crass and materialistic, I neverthe
less think there are some important lessons for
marketers in there. Do you think it is some kind of
semantic accident that Apple employed "evange
lists" to spread the Macintosh gospel?

• Read Sun Tzu and the Art of War. Sun Tzu was
the ancient Chinese version of Lee Iococca - except
that the stakes were higher for Mr. Sun.

• No debt for expansion for at least two years. It'll
take you that long to figure out how to spend
money without wasting it. Make your mistakes
cheap ones, relatively speaking.

around in a position to do so.

Why Publish Yourself?

A) No one cares as much about your product as you
do. You can rest assured that it will not languish
unpromoted. This is a real problem at times be
cause a publisher's marketing is often not what the
author thinks it should be.

B) Change is a constant in this industry and ap
pearances can be deceiving. The folks flashing
money right and left today are likely to be filing
Chapter 13's tomorrow.

Legal hassles abound, too. Like what happens when
your biggest competitor buys out your publisher?

Furthermore, some publishers I've seen "sign" as
many products as possible in the hope that one will
turn out to be a big winner. It makes them look
good to have such a thick catalog. It makes you
look bad, however, when the programs sold with
yours are trash.

C) You make more money per unit sold. It is the
rare developer who can command 20% of the pur
chase price. Most first-time authors are lucky to
get something in the 5-1 Oo/o range. If you sell your
own creations, the amount you get depends on you
and nobody else .

This is not to say that there are not serious draw
backs to self-publishing. It is almost guaranteed
that you'll not move as many products since you

don't have the ad budget of the big boys. And you'll
need to learn a few things and spend about 10-200/0
of your time working on marketing related projects.

Serious Bun Covering Time

By the way, I'm not suggesting that there are not
publishers around who are trustworthy. If I had
time to develop a consumer package I'd be quite
comfortable having Roger Wagner Publishing or
Jem Software (Randy Brandt's new Co.) produce it.
If I had a language or heavy duty programming
product I'd consider The Byte Works in a heartbeat.
And there are many more. I've really enjoyed our
working relationship with Night Owl Productions
and Bob Shofstall, too. There are many others, too,
I'm sure. I just don't know the folks personally.

Why the Apple II Market?

In my not-so-humble opinion, the Apple II market is
perfect for small developers.

The main reason is that the market is mature -
Apple II users know what they want and can smell
a trashy product a mile away. For this reason,

Program
the IIGS!

Programming the Apple IIGS in Assembly
Language by Ron Lichty and David Eyes. The easiest
to-follow step-by-step guide to creat ing fu ll -fledged Apple
IIGS applications. Develop Hello, World from a n 8-line
program that prints on the text screen to a full -b lown desktop
program wi th menu bar. d ia logs, icons, and mult iple,
s izeable, scroll able w indows' Thorough reference sect ion.
550 pages. "Addict ive ... the more I read, the more fasc inated
I became ... In my opinion, this book will fill a b ig gap in the
world of the Apple IIGS ." (Call -APPLE technical edi tor Cecil
Fretwell) "A must for would-be Apple JIGS programme rs ... a
jump start for beginners and experienced programmers alike."
(Nihhle editor David Krathwohl) "This book be longs in
every Apple IIGS programmer's library." (Dive rsi-software
author/publisher Bill Basham) $32 postpaid

Hello, World disks (code from the book, on disk) :
APW/ORCAM $20; Merlin $ 10; C (APW/ORCA) $20

ORCA/M Assembler (Byte Works) $46 postpaid
ORCA C Compiler (Byte Works) $84 postpaid

Calif: add 7% tax. No VISA/MC. Send SASE for details.
Foreign, add: Canada $2; Europe $1 4 (air); Asia $20 (air)

Ron Lichty (8), POB 27262, San Francisco, CA 94127

small developers can compete with the big boys' ad
bucks quite effectively.

In the Mac market, on the other hand, if you can't
splash a four color ad across two pages of MacUser,
you're nowhere. Never mind that such a venture
would run you $10,000+ per month.

I don't know if you're a gambler, but the Apple II
market also has the potential for a fairly decent
turnaround. I can't predict the future very well yet,
but if Apple puts any marketing muscle behind the
IIgs, we who have developed really good products
for the II will be in position to benefit right away.

There's a really big assumption underlying this en
tire series: our product and our customer support
must be very, very good. Good marketing just al
lows us to reach our potential. As we improve our
product and product support, our potential im
proves.

Here's hoping we all can do just that in the coming
months.

==Ross==

Everything You
Ever Wanted To
Kno\V About X
(CMDS)*
*but were afraid to ask

by Eric Mueller

Editor: There's no doubt that HyperStudio™ from
Roger Wagner Publishing is one of the "defining"
products for the Ilgs. I've even heard Apple engineers
sing its praises. StilL I have been reluctant to dive
into the XCMD game in part because of new
terminology. Catch-phrases like "HyperStudio
Information Block" turned my palms clammy. I was
quite pleased, therefore, to receive Eric's clear and
concise treatise on the program's innards. In a nut
shell: it's easier than I thought. ==Ross ==

HyperStudio XCMDs (pronounced "x-commands")
give you the power to do anything at all within the
HyperStudio environment.

That's quite a sweeping statement--but completely
true. XCMDs allow you to define new actions for
buttons, the heart of HyperStudio. By simply
choosing "Trigger an XCMD ... " in the button actions
dialog, when creating any button, you can cause a
mouse-click to give control to an external module
on the disk.

Assumptions ...

This article assumes you're somewhat familiar with
HyperStudio, and how buttons and cards are used
within that environment. You should also be
somewhat familiar with assembly language. The
source code provided in Merlin 16+ format but it
should be a simple matter to convert it to APW or
ORCA/M.

Safe Hex

HyperStudio XCMD files must be named
"HS.XCMD", have their filetype set to $BC (Generic
Load File) and be located in the same directory as
the stack you wish to use them with. Currently,
only one XCMD per stack is allowed, unless you're
using Ken Kashmarek's Master XCMD package.
This package, which gives you a master "HS.XCMD"
file and several other XCMDs as modules (named
"XCMD.BEEP", "XCMD.VIDEO", etc). allows you to
use more than one XCMD per stack. I highly
recommend it for XCMD developers: it makes
development very simple by allowing you to test
several XCMDs within the same stack.

An XCMD can do almost anything it wishes--from
beeping the speaker to accessing a videodisc player
to moving disk files around to presenting entirely
new screen displays independent of HyperStudio.
As a matter of fact. two of those XCMDs already
exist (the one to beep the speaker and the one to
access a videodisc player) . Other XCMDs already
written include programs that display dialog boxes,
control an Apple Video Overlay Card, change the
border color, play audio tracks on a CD-ROM drive,
and move to a random card number. You can get
more XCMDs from the commercial information
services (such as GEnie). or possibly your local user
group may have a few in their software library.

In this article, I'll be presenting four new XCMDs
for you to experiment with: one to beep the speaker
a single time (called Beep). an XCMD to beep the

8/Jl6

speaker as many times as you like, depending on
the value you pass it (called Beep2), an XCMD to
dial a Hayes-compatible modem attached to your
modem port (Dial). and an XCMD to let
HyperStudio function as an automatic appointment
book (Date). These XCMDs took me various
amounts of time to develop, from 15 minutes for
the BEEP command to three hours for both the
DATE and DIAL XCMDs.

The Environment

Developing these was an absolute pleasure-
between the speed of Merlin and being able to hop
in an out of HyperStudio, I realized what a nice
testing environment HyperStudio provided to me for
playing with chunks of code. I could work with
TextEdit fields and other control types, sound, the
super hi-res screen, the HyperStudio stack
environment (where there are several cards and I
can move to any of them). and much more.

If I find myself writing code that returns a correct or
incorrect value (for example), it's much easier for
me to test it as an XCMD within HyperStudio than
it is for me to write a tool startup procedure and
event loop and build all the associated structures
(menus, windows, etc) just to have a nice shell to
play around it. And that's how I think of
HyperStudio: as something of a feature-rich 'super
shell'. It's very easy to hook up and trade data with
it, and that makes testing code a very simple
matter--much easier than
tearing up another program

Exerciser is published in the HyperStudio package
as Merlin 16+ source code, but is also available in
ORCA/C. ORCA/Pascal, TML Pascal, and ORCA/M
assembly versions. These other versions can be
found on a local information service or user group
library disk near you, or you can order them from
Roger Wagner Publishing for $10. Additionally, they
will appear on this month's 8/16 On Disk, so if
you're a disk subscriber, you'll have them.

Quick on the Trigger

When a user selects 'Trigger an XCMD" in the
HyperStudio button action, they are prompted to
type in a line of text to pass to the XCMD module.
This string is inserted into the button's definition,
within the stack, so that different buttons m ay pass
different strings to the XCMD. If you're using the
Master XCMD system, this string should start with
the name of the XCMD you wish to use (for
example, "BEEP 4" or "DATE +E" instead of just "4"
or "+E", when not using the Master XCMD).

The XCMD will be passed control when the button
is clicked. Upon entry. the accumulator will contain
the user ID of the XCMD module, and the Y and X
registers will contain the low and high words of a
long pointer to the HyperStudio information block
(c.f. Table 1). Your code should set the data bank
and direct page registers as needed. HyperStudio
neither allocates nor guarantees any direct page
space for XCMD use; it's the XCMD's responsibility

to transplant your test
material. Table 1: The HyperStudio Inforamtion Block Structure

The HS.DEMO disk (in the
HyperStudio package) has a
directory called "Xcmds" with
the files "XCMD.DOC" and
several directories. The
"XCMD.DOC" file, written by
myself in April of last year
and updated that September
by Ken Kashmarek, briefly
outlines the XCMD
specifications. The directories
contain several
demonstration XCMDs (with

Offset

+0 - +1
+2 - +3
+4 - +7

- +11 +8
+12 - +15
+16 - +19

Size

WORD
WORD
LONG
LONG
LONG
LONG

Merlin 16+ source code) written in assembly
language: Find, Port2, Video, and Exerciser. Find,
Port2, and Video each provide various extensions to
HyperStudio, while Exerciser shows what
HyperStudio passes to an XCMD and what the
XCMD can pass back and even control in
HyperStudio.

Description

ButtoniD (the ID of the button pressed)
CurrentCardiD (the ID of the card with the button)
handle to the script
length of the script in bytes
pointer to the command line text
pointer to entry point for int. function handler

to get it's own DP locations.

This table contains several important variables that
you may work with in your XCMD. The most useful,
however, are the last two: the long pointer to the
command line text (so you may see what was
passed to the XCMD), and the long pointer to the
entry point for the HyperStudio internal function

8/1l6

handler (so you may control features of
HyperStudio from the XCMD) Editor: This is anala
gous to calling an Applesoft ROM routine from assem
bly language or using a HyperCard "callback" on the
Macintosh_

Accessing the intemal function handler is a matter
of pushing any necessary parameters on the stack,
selecting what you want HyperStudio to do by
setting a value in the X register, and calling this
entry point. The possible options are listed in Table
2. Only functions 5 and 8 (move to specific card
and find text) require additional parameters to be
passed on the stack: move to specific card needs
the card ID (a word-sized value) pushed on the
stack first, and find text requires a long pointer to
the text to search for. and the find flags (another
word-sized value: detailed below). Additionally,
function 9 (set VOC flag) requires that you load the
Y register with a boolean value to tell HyperStudio
whether or not there's an Apple Video Overlay Card
in the machine. (This allows you to override
HyperStudio's control of the VOC.)

Let's take all that I've presented and apply it to a

XC ;allow 65c02 opcodes
XC ;allow 65816 opcodes
ITO{ %00 ;16-bit M and X

rel ;relocatable code
typ $BC ;type $BC (for an XCMD)
1st off
use beep.macs ;use this macro file
1st rtn

*** *

phb

phk
plb

;usual startup

*===
*
* Do the magic:

*

_SysBeep ;boink!

* Fix data bank and return to HyperStudio

real, live, honest-to-goodness XCMD. I'll start with plb
something simple, the Beep XCMD. This XCMD will rtl ; return to HyperStudio!
simply beep the speaker once. It requires no input
and does not control HyperStudio in any way. **

Editor: All of the macro fJles called by the USE pseu- 1st on
do-op can be generated by running Macgen on the CHECKSUM chk
existing source. Every macro used is in the standard lst off
library. If one is not in your standard Merlin library,
you may need to get an update. See the references sav xcmd.beep.l ;make this link file
at the end.

Listing 1: BEEP .XCMD

lst off ;lose playback

* *
*BEEP xcmd by Eric Mueller 9-5-90 *
*copyright (c) 1990 Ariel Publishing *

* *

*
* XCMD string: "BEEP"

*

*
*
*

*
* This XCMD will execute a single
* _ SysBeep calL

*

*
*
*
*

cas in ;case insensitive

Table 2: HyperStudio Routine Numbers for the
Internal Function Handler

value in X

1
2
3
4
5
6
7
8
9

function

move to first card in stack
move to last card in stack
move to previous card
move to next card
move to specified card (*)
redraw card (refresh screen)
(unused)
find text (*)
set video overlay card flag

Y register= 0 means no VOC in the machine
1 means VOC in the machine

n these functions require additional parameters to be passed on the
stack before the call is made.

8/1l6

To build and test this program, enter the listing
into Merlin and then press apple-6. Merlin will
assemble, link, and save the final XCMD.BEEP file
on your drive. (At the end of the assembly, a
checksum value will be displayed to the left of the
label "CHECKSUM'. lf it's not $E5, check your
typing.) If you're not using the Master XCMD
system, change the last line of the program to "sav
hs.xcmd.l" so that you'll get a resulting file entitled
HS.XCMD. Copy this file into the same directory
with HyperStudio.

Next, run HyperStudio and create a new button
with the button text "Beep me, baby!" In the button
actions dialog, click on the check box next to
"Trigger an XCMD". You'll be presented with a
dialog box containing a single edit line: if you're
using the Master XCMD system, you'll need to type
"BEEP", otherwise, simply make sure this line is
blank. In either case, click on "Okay" to exit the
dialog and then "Okay" one more time to finish
creating the button.

Now, for the big test! You should have a button on
the screen that says "Beep me, baby!" and the
cursor should be the HyperStudio browse tool (the
hand). Click on the button and listen: if the speaker
beeps, your XCMD works as advertised!

Save your stack and go back into Merlin for this
next example. It's a little more complex: called
Beep2, it is a natural extension of the Beep XCMD.
Beep2 allows you to specify, on the command line,
how many times you wish the speaker to beep. This
introduces the idea of grabbing parameters off of
the command line and using them. I'll explain more
after this listing ...

Listing 2: BEEP2

lst off ;lose the playback

* *
* BEEP2 xcmd by Eric Mueller 9-5-90 *
* copyright (c) 1990 Ariel Publishing *
* *
------------------- -------------------- ---- - ----
*
* XCMD string: "BEEP2 n"

*
* n number o f times to beep speaker

*

*
*
*
*
*

* XCMD will execute _SysBeep as many times as *
* you specify. *
* *

cas

XC

XC

mx

rel
typ
lst
use

in ;case insensitive

;allow 65c02 opcodes
;allow 65816 opcodes

%00 ;16-bit M and X

;relocatab1e code
$BC ;type $BC (for an XCMD)
off
beep2.macs ;use this macro file

lst rtn

**

tempPtr equ
tempPtr2 equ
txtPtr equ

0,1,2,3 ;scratch pointer #1
4,5,6,7 ;scratch pointer #2
8,9,a,b ;long ptr to bttn's txt

**

phb
phk
plb

;usual startup

MoveLong tempPtr; temp
MoveLong tempPtr2;temp2

;save 0- 3
;save 4- 7

MoveLong txtPtr;temp3 ;save 8-B

sty tempPtr ;save ptr to HyprStdi o
stx tempPtr+2 ; ... info bloc k

ldy #12 ;get ptr to the command
lda [tempPtr],y ;line txt (@ offst
sta txtPtr ; ... +12 in info block)
ldy U4
lda [tempPtr),y
sta txtPtr+2

* Get length o f the cmd line text & store it

lda #0 ;clear out high byte
shortacc
lda [txtPtr] ;get len (txtPtr pt s

;to a P string which has
;a leading length byte)

longacc
inc ; (+1 because of the way

; I do compares)
;hold on to for later

;no characters ?
sta
cmp
beq

length
u
:beepLoop ;yes - beep once

*===
--- *

* * * Figure out how many times to beep :

*

:parse

:loop

:loop2

:stop

8/Jl~

ldy to ;start at first char
shortacc

iny
cpy length ;at the end?
beq :stop ;yes

lda [txtPtr] ,y
crrp t' ' ; space?
beq :loop ;yes - ignore

;no - copy them to a buffer
ldx to

sta :buffer,x
inx
lda [txtPtr] ,y
iny
cpy length
bge :stop ;if we're at _end, stop
crrp t' ' ;another space?
bne :loop2;no-keep getting int str

longacc

PushWord tO ;space
PushLong t:buffer ;push ptr to buff
phx ; push length of int. str
PushWord tO

Dec2Int

pla

;unsigned

;get the integer
bcs :stopBeep ;if an error, leave

* Now that we know how many times to beep, do the
* big stuff here:

:beepLoop
crrp tO ;is counter zero?
beq :stopBeep ;yes - stop

pha
_SysBeep
pla

dec
bra :beepLoop

;hold counter
;boink!
;get counter back

;bump it down
;and keep going

* We're done- restore things and return to HS

:stopBeep
MoveLong temp;tempPtr ;restore 0-3
MoveLong temp2;tempPtr2 ;restore 4-7
MoveLong temp3;txtPtr ;restore 8-B

plb
rtl ;return to HyperStudio!

*===

*
* Data area

*

* Buffer for integer we get

:buffer ds 20

* Storage for DP things we trash:

temp
temp2
temp3

ds
ds
ds

4

4

4

* Length of cmd. line text

length dw 0

*** *********

lst on
CHECKSUM chk

lst off

sav xcmd.beep2.1 ;make this l ink file

To test this XCMD, build it in Merlin--the
checksum value at the end should be $3D.
(Remember to change the last line to "sav
hs.xcmd.l'' if you're not using the Master XCMD.)

Installing BEEP2

Now go back into HyperStudio, reload the stack you
were working on earlier, and make a second button
called "Beep me thrice, baby!" When you get a
chance to enter the text to pass to the XCMD, type
either "BEEP2 3" or just "3", again depending on
whether or not you're using the Master XCMD.

Clicking on this button should cause the speaker to
beep three times. You can continue to experiment
with Beep2 by passing it different values.. . illegal
strings (such as "-1 ") will cause nothing to happen,
and no parameters will cause it to act like Beep and
only beep once.

The Beep2 XCMD works by parsing out the
command line (at the label ":parse") and looking for
ASCII digits. Once I find the start of a number (in
the ASCII range from '0' to '9'). I copy the number
off to a buffer (called ":buffer") and stop when I
reach the end of the command line or a space. (This
routine can be used to pull several parameters off
the stack, assuming they're separated by spaces.)

Finally, at the label ":stop", it's simply a matter of
passing the number buffer to the toolcall _Dec2Int,
which converts an ASCII string representing a value
(such as "12") into a value (such as $C).

Dial an XCMD

The next XCMD I'm going to present is called Dial.
It will talk to a modem plugged into your IIgs
modem port and dial a phone number for you. This
XCMD presents the concept of several flags on the
command line to 'fine tune' performance. Based on
these flags, the XCMD can dial in pulse or touch
tone, take the phone number from the command
line or from highlighted text in the current text
control, or even disconnect from the line after
dialing a number!

This XCMD also takes control of the text tools to
send the dialing string to the modem. XCMDs may
do this as long as they preserve the environment (a
similar limitation is imposed on new and classic
desk accessories).

*------------------
1st off ;lose the playback

* *
* DIAL xcmd by Eric Mueller 9-5-90 *

* copyright (c) 1990 Ariel Publishing

*
*
*

* *
*XCMD string: "DIAL [+TI+P]I+H [ni+F]" *
* *
* +T force tone dialing *
* +P force pulse dialing *
* +H hang up (send just a return instead of *
* an ATDT string - use this after dialing to *
* make the modem disconnect from the line) *

* *
* n
* +F

*

phone number to dial *
dial phone number currently hilighted in a *
text field *

*

* *
* This XCMD will dial phone numbers for you!*

* *
* It assumes that you have standard Hayes- *
* corrpatible modem attached to modem port. *

* *

cas

XC

XC

in ;case insensitive

;allow 65c02 opcodes
;allow 65816 opcodes

*

mx %00 ; 16-bit M and X

rel ;relocatable code
typ $BC ;type $BC (for an XCMD)
1st off
use dial.macs
1st rtn

terrpPtr equ
terrpPtr2 equ
txtPtr equ
button's text

0,1,2,3
4,5,6,7
8,9,a,b

;scratch pointer #1
;scratch pointer #2
;long ptr to

**

phb
phk
plb

;usual startup

MoveLong tempPtr;temp
MoveLong tempPtr2;temp2
MoveLong txtPtr;temp3

;save 0-3
;save 4-7
;save 8-B

sty tempPtr ;ptr to HyperStudio
stx tempPtr+2 ; ... info block

ldy #12 ;get ptr to command
lda [terrpPtr],y;line text (@offset
sta txtPtr ;+12 in info block)
ldy #14
lda [terrpPtr] ,y
sta txtPtr+2

* Get the length of command line text & store

:getPtr
lda ;clear out high byte
shortacc
lda [txtPtr] ;get len (txtPtr pts

;to a P string which has
;a leading length byte)

longacc
inc

sta length

; (+1 because of the way
; I do compares)

;hold on to this

*===

*
* Now we have a ptr to text attached to the
* btn (to pass to XCMD) in txtPtr. Let's

*
*

parse out the string:

:parseLine
stz

lda
sta

hangUpFlag

#1 ;assume number starts at
numbOffset ;beg of dial string

*

8/ll(S

Did the user

ldy
lda
jsr
bcs

sty
lda
bra

pick +T (tone dial) option?

u ;start parsing at +1
t'T'
findit ;find "+T"
:noT ;couldn't find it!

numbOffset;store offset to num
t'T' ;make dialing pfx "ATDT"
:store ;and set it up

* Did user pick the +P (pulse dial) option?

:noT
ldy
lda
jsr
bcs

sty
lda
bra

u ;start parsing at +1
41'P'
findit ;find "+P"
:noP ;couldn't find it !

numbOffset;store offst to numb
41'P' ;we got 'P', so set
:store ; ... the dialing option

* If neither , maybe we want to hang up?

:noP
ldy u ; start parsing at +1
lda 41'H'
jsr findit ;find "+H"

,bcs :cont ;couldn't find it!

inc hangUpFlag
brl talkModem ;we found it - do it

* If a dialing option was used, store it away

:store
short ace ;set dialing option

now

sta dialOpt
lda i4
sta dialString
long ace

;set length of prefix . . .
; ... to four ("ATDx")
;back to long ace

bra :get Numb

* We arrive here if no dialing option specified.
* Need t o pull extra space out of the dialing pfx .

:cont
shortacc
lda 413 ;since it's a P-string, ...
sta dialString; . . . j ust bump the len

down
l ongacc

* Now f ind the phone number to call:

:getNumb
ldy
lda

u
41'F'

;start parsing at +1

use

jsr
bee
brl

findit
:gotF
:getNumbl

;find "+F" option
;found it!
;couldn't find it;

;number speci fied

* Since "+F" option used, phone number was
* hilited in text field . Grab it out & use it

* to dial.

:gotF

:gotSel

PushLong 41:start0ffset ;ptr to buffer
PushLong 41 : end0ffset
PushLong 410 ;use current TERecord

TEGetSelection
bee :gotSel
brl :getNumbl ;if erro r , leave now

lda :startOffset
cmp
bne
brl

:endOffset ;the same?
:notTheSame ;no-se lec t ion made
:getNumbl ;yes-no selecti on

;so leave

:notTheSame
PushLong 410 ;space
PushWord 41 %11_101 ; allocate s pc & give

;text to us unf ormatted
PushLong 41:hand le ;handle t o text
PushLong 41 0 ; bufferLength is igno red
PushWord 410
PushLong 410
PushLong 410

TEGetText
Pull Long

;styleRef is ignored
;don't return s t yle i n f o

;use default TERecord
;get the text
;ignore t otal l ength

bcs :getNumbl ;if error, leave now

MoveLong :handl e;tempPtr2 ;deref
lda [tempPtr2]
sta tempPtr
ldy t2
lda [tempPt r 2],y
sta tempPtr+2

* Now we know where selection is & we have
* in memory, copy out t o t he number b uffer .

:rroveSelection
ldx 410

:1

inc :endOffset; (+1 for compare)
short ace
ldy :startOffset

lda [tempPtr] , y ;char of selection
sta number, x
inx
cpx 4131 ;buffer overflow?

beq :stop ; yes - stop

:stop

iny
cpy
bne

lda
sta

:endOffset ;all chars yet?
:1 ;no - keep going

tO
number,x ;store nil @ end of

;buffer (make a c-string)

longacc ;back to a long accum

PushLong :handle ; trash this memory
_DisposeHandle

bra talkModem ;and do dirty work!

:startOffset adrl 0 ;offset in curr TERecord
;to the selection start

:endOffset adrl 0 ;offset in current TERecord
;to the selection end

:handle adrl 0 ;handle to all text

* If "+F" not used, copy phone number from
* command line into the buffer.

:getNumbl

:loop

ldx
ldy

tO ;offset into number buffer
numbOffset ;get offset to t

dey
shortacc ;down to short accum

iny
cpy length ;at end of the string?
beq :stopl ;yes - stop

lda [txtPtr] ,y ;get a character
cmp t' I ; space?
beq :loop ;yes - keep looping

* note: remove next four lines if you want to
* allow non-digits into the dialing string

:stopl

cmp
blt
cmp

bge

sta
inx
cpx
bne

t'O' ;digit for number?
:loop ;no - ignore it
t'9'+1
:loop ;no - ignore it

;the character is okay!
number,x ;store it in buffer

;bump the offset forward
t31 ;done 30 digits yet?
:loop ;no - keep going

lda tO ;put a zero at end of
sta number,x ;the number buffer
longacc ;& go back to long ace

*===

*
* The parsing is done and string is set up!
* Send it out to modem with the text tools.

*

talkModem

* Save old output device

-GetOutputDevice
PullLong OldSlotO
PullWord OldTypeO

* Save old output globals

-GetOutGlobals
PullWord OutOr
PullWord OutAnd

* Set the new output device and globals
* If you want to output to the printer change
the
*next line's parameters to "tl;tl" (use slot
U).

:setOutDev
-SetOutputDevice tl;t2 ;Pascal type,

slott

-setOutGlobals t$7F;t$00

* Initialize it

-InitTextDev tl ;initialize output

*Did we want to hang up (send just return)?

lda hangUpFlag
bne :hangUp ;yes

* Send dialing pfx ("ATDT", "ATOP" or "ATD")

-WriteString tdialString ;send cmd

* Send out the phone number

-WriteCString tnumber ;send number

* Finally, drop carriage return behind it all

:hangUp
-WriteChar t$0000 ;send a C/R

* Reset the output device and globals

-SetOutputDevice OldTypeO;OldSlotO
-setOutGlobals OutOr;OutAnd

* Re-initialize them
-InitTextDev tl ;initialize output

*===

*
* Finally, wrap stuff up and leave.

*
* Restore our zero page locations

MoveLong temp;tempPtr ;restore 0-3
MoveLong temp2;tempPtr2 ;restore 4-7
MoveLong temp3;txtPtr ; restore 8-B

* Fix data bank and return to HyperStudio!

plb
rtl

*==

*
* findit: this subroutine will search through
* string ptd to by [txtPtr] (plus the offset
* in Y register) and look for character you
* specify in accumulator. returns with carry
*set if it couldn't find it, or carry clear &
* Y set to character after one you wanted,
* if it did find it.

*

findit

:loop

:not Yet

:stop

:gotit

:findMe

shortacc
and #$5f
sta :findMe

lda [txtPtr],y
cmp
bne
iny
cpy
beq
lda
and
cmp
beq

iny
cpy

bne

#'+'
:not Yet

length
:stop
[txtPtr] ,y
#$5f
:findMe
:got It

length
:loop

longacc
sec
rts

iny
mx %11
long ace
clc
rts

db 0

;short accumulator
;make it uppercase
;find this char

;option?
;no

;at the end?
;yes - stop now
;no, check the next char
;make it uppercase
;character we're after?
;yes! we got it!

;no - move to next char
;at end of the string?
;no - keep going

;stop the search
;back to long accum
;carry set = no match

;bump Y forward one
;force longacc to assmble

;and leave

*===

*
* Data area: mise storage

*
* Length of button's text

length dw 0

* Offset into str for phone number (past +T
or +P)

numbOffset dw 0

* Boolean: did we want to hang up or dial a
number?

hangUpFlag dw 0

* Storage for dial command and number

dialString dfb 4, 'A', 'T', 'D'
dialOpt asc ;put "T" or "P"
number

+
ds 31 ;room for 30 digits

;a trailing zero

* Storage for direct-page stuff we trample

temp
temp2
temp3

ds
ds
ds

* Storage for

OldSlotO adrl
OldTypeO ds
OldSloti adrl
OldTypei ds
I nOr ds
I nAnd ds
Out Or ds
OutAnd ds

4

4

4

text

0
2
0
2
2

2
2
2

tools stuff

**

1st on
CHECKSUM chk

1st off

sav xcmd.dial.l ;make this file

After entering the listing, build it (the
checksum value should be $22) and go into
HyperStudio. Instead of giving you a specific
button to create, I'm going to explain all of the
different options for the Dial XCMD and let

you decide how you wish you create the string. Note
that, if you don't have a modem or you don't want
to dial it. you can change the -SetOutDevice line (at
the label ":setOutDev" in the listing) to
"-SetOutDevice #1;#1" in order to use slot one. This
will send all of the program's dialing strings to the
device plugged into your printer port.

The Dial program is very flexible; here's several
examples of how to use it:

• DIAL +T 1-913-469-6502 . .. dial the
number 1-913-469-6502 in touch tone

• DIAL +P 1-619-442-0522 ... dial the
number 1-619-442-0522 in pulse

• DIAL 467-6429 ... dial the number 467-
6429 in your modem's default dialing mode

• DIAL +t +f ... dial the number
highlighted in the current text field in touch tone

• DIAL +h ... hang up the modem after
dialing (send a single CR)

The Tricks of the Trade

The source code has many interesting tricks. so
let's take a look at it, section for section.

First. I get the pointer to the command line text (at
the label ":getPtr") and then find the length of this
text. The command line text is stored as a p-string,
with a proceeding length byte. so it's easy to
determine the length.

The next section of the code (starting at the label
":parseLine") works through the command line and
looks for all flags. Flags can be found by looking for
the proceeding "+" before the single-letter option. I
look for the "+T' option, the "+P" option, and then
the "+H" option, since these all come first on the
command line (before the phone number or the "+F"
flag). Both the "+T" and "+P" flags modify the dialing
prefix (to either "ATDT' or "ATDP", respectively).
while the "+H" flag immediately jumps to the
section of code that talks to the modem.

I use the same subroutine, findlt, to look for each of
the different flags. The findlt routine requires that
you tell it at what offset to start looking on the
command line (in the Y register), and what flag
you're looking for (in the accumulator). It will
retum with the carry set if the flag couldn't be
found. or with the carry clear and the Y register
pointing to the character _following_ the flag, if it
was found. The findlt routine is very handy, and

you may find some use in your own XCMDs.

Once those flags are found, it's time to determine
what phone number we're dialing (at the label
":getNumb"). First. I look for the "+F" flag. If that's
found, I branch to the label ":gotF" and work with
the current text field. This is a matter of two special
TextEdit calls: _TEGetSelection. which retums the
starting and ending offset of the selection in the
current text record, and then _TEGetText, which
actually gives me all of the text in the current
record. Combining these two calls will let me pull
the currently highlighted text out of the text field
(this happens at the label ":moveSelection") and
into a buffer in the XCMD, called "number".

If the "+F" flag was not used. however. it's a simple
matter of copying the phone number from the
command line right into the "number" buffer. This
happens at the label ":getNumb1".

Finally. the flags and phone number are parsed
out, and it's time to dial the phone. at the label
"talkModem". I save the current state of the text
tools by getting the output device and output
globals. Then. I set the new text device and globals.
Finally, it's just a matter of writing out the dialing
prefix ("ATDT', "ATDP", or just "ATP"), the phone
number. and a carriage retum behind all of it.

From that point out, it's downhill: leaving the
XCMD is simply a matter of restoring the text tools
to their previous state. restoring the direct page
locations. fixing the data bank. and RTLing back to
HyperStudio.
Following that part of the listing is the "findit"
subroutine, which scans the command line in
search of a target character. It's fairly well
commented. and I won't go into details about it
here, other than to say that it's worth studying and
understanding. The final section of the list ing is
simply a data area.

The final sample XCMD is called Date. It will search
through a stack and look in each text field for the
current date (from the control panel setting). This
allows you to set up a stack and put each day's
events on each card, with the events labeled by a
text field at top (such as "Appointments for
9/6/90"). You can also use this as a generic
automated retrieval program, assuming that your
data is stored in a text field and has each day's
information labeled with the date.

Listing 3: Date.XCMD

1st off ;lose the playback
------------- ----- ---- ------------------------

8/1l6

* *
* DATE xcmd by Eric Mueller 9-5-90 *
* copyright (c) 1990 Ariel Publishing *

* *
------ --

*
* XCMD string: "DATE [+EI+R]"

*
* +E
* +R

*

search only editable fields
search only read-only fields

*
*
*
*
*
*

--
*
*This XCMD will search through all text flds
*(with any exceptions you specify with +E or
* +R) and find the current date, & then jmp
* to that card.

*
* The actual date text searched for is from

*
*
*
*
*
*
*

* control panel. If the control panel is set *
* to give you date in mm/dd/yy format (for *
*example), & current date is September 6th, *
* 1990, this XCMD searches for "9/6/90". (Note : *
* spaces are removed from date string prior to *
* executing the search, since the cntrl panel *
* returns the date as " 9/ 6/90".)

*
*
*

--

cas in ;case insensitive

XC ;allow 65c02 ope odes
XC ;allow 65816 opcodes
mx %00 ;16-bit M and X

rel ;relocatable code
typ $BC ;type $BC (for an XCMD)
1st off
use date . macs ;use this macro file
1st rtn

ptrinfo equ
txtPtr equ

0,1,2,3 ;long ptr to HS info blk
4,5,6,7 ;long ptr to button's txt

phb
phk
plb

;usual startup

MoveLong ptrinfo;temp ;save 0-3
MoveLong txtPtr;temp2 ;save 4-7

sty
stx

ldy
lda

ptrinfo ;save ptr to HyperStudio
ptrinfo+2 ; ... information block

*12 ;get ptr to the command
[ptrinfo],y ;line text (at offset

sta txtPtr ; ... +12 in info block)
ldy U4
lda [ptrinfo] , y

sta txtPtr+2

* Get length of command line text and store it

later

lda *0 ;clear out high byte
shortacc
lda [txtPtr] ;get len (txtPtr points

; to a P string which has
;a leading length byte)

longacc
inc

sta length

; (+1 because of the way
; I do compares)

;hold on to this for

*==

*
* Now we have a pointer to text attached to the
* bttn (to pass to XCMD) in txtPtr. Let's parse
* out the string:

*

:parsel
lda #%110

sta findFlags

;assume we can search
;all fields, to start w/

* Did user pick +E (editable fields only) opt?

ldy *0 ;start parsing at +0
lda #'E'

jsr findit ;find "+E"
bcs :noE ;couldn't find it!

;yes
lda findFlags
and *%101 ;turn off read-only bit
sta
bra

findFlags
:cont

*Did user pick +R (read-only flds only) opt?

:noE
ldy
lda
jsr
bcs

lda
and
sta

*0 ; start parsing at +0

*'R'
findit ;find "+R"
:cont ;couldn't find it!

findFlags
#%011 ;turn off editable bit
findFlags

* Now we have flags set up. Get date from the
* ctrl panl so we've s omething to search for.

:cont
PushLong *dateBuffer ;buff for date

ReadAsciiTime ;get from the toolbox

;date is first 8 bytes of
;buffer, always "xx/xx/xx"

* Remove any spaces from the date string.
:killSpcs

:loop

:done

short ; short registers
ldx tiD
ldy i-1

iny
cpy
beq
lda
and
cmp
beq
sta
inx
bra

i9 ;done all characters?
:done ;yes
dateBuffer,y ;get a character
i$7f ;clear high bit
#' ' ;is it a space?
:loop ;yes - ignore it!
dateBuffer,x ;no - put it back

:loop
;bump storage index
;and keep going

stx dateLength ; store len date str
long ;back to long regs

*===

*
* Now date is set up as a p-string & so are
* the flags for the find command. Execute it.

*

* Get the addr of the HyperStudio entry point

:getEntry
ldy
lda
sta

FIND)
iny
iny
lda

#16 ;get addr to the HS ...
[ptrinfo],y ; .. . special fn
:JSLaddr ; . . . handler (does

[ptr!nfo] , y
sta :JSLaddr+2 ;store bank

* Set up the parameters for the call.

;push a pointer to the buffer
PushLong #dateLength
PushWord findFlags

ldx i8 ;option i8 is FIND
TEXT

* Set up stack to call HyperStudio and then
return
* control to us.

:setReturn
phk

address
;push the return

per :rtnAddr-1

lda :JSLaddr+2 ;push call addr
shortacc
pha
longacc
lda :JSLaddr
dec
pha

;this pushes bank byte

;and this, the address
; (again, -1 for stack)

* Now give control to HyperStudio for the find:

rtl

:rtnAddr

;call HyperStudio's routine
;via RTLing to it

;HyperStudio returns
;control to here

* If text was found, it moves the user to the
* card. Otherwise, a dialg ("No match found") is
*displayed. In either case, we're done .

:done
MoveLong temp;ptrinfo ;restore 0-3
MoveLong temp2;txtPtr ;restore 4-7

* Fix data bank and return to HyperStudio!

plb
rtl ;return to HyperStudio!

:JSLaddr adrl 0 ;holds addr to func handler

*==
*
* findit: this subroutine will search through
* the string pointed to by [txtPtr] (plus offset
* in the Y register) & look for character you
* specify in the accumulator. ret~rns with carry
* set if it couldn't find it, or carry clear and
* Y set to the character after the one you
* wanted if it did find it.
*

findit
shortacc ;short accumulator
and #$5f ;make it uppercase
sta :findMe ;find this char

:loop
lda [txtPtr] ,y
cmp i'+' ;option?
bne :not Yet ;no
iny
cpy length ;at the end?
beq :stop ;yes - stop now
lda [txtPtr] ,y ;no, ck next char
and #$5f ;make it uppercase
cmp :findMe ;char we're after?
beq :gotit ;yes! we got it!

:notYet

8/Jl(6

iny
cpy length
bne :loop

:stop
long ace
sec
rts

:gotlt
iny
mx %11
longacc
clc
rts

:findMe db 0

;no - next char
;at end of the str?
;no - keep going

;stop the search
;back to long accum

;carry set = no match

;bump Y forward one
;force longacc to asm

;and leave

*==
*
* Data area: mise storage

*
* Length of command-line text

length dw 0

* Flags for FIND command go here

findFlags dw 0

* Toolbox returns date/time in this buffer

dateLength db 0 ; length byte
; (we fill this in later}

dateBuffer ds 20

* Storage for direct-page stuff we trample

temp
temp2

ds
ds

4

4

lst on
CHECKSUM chk

lst off

sav xcmd.date.l ;make this link file

(The checksum value for this code should be
$AE.)

The Date command has two optional parameters:
"+E", to search only editable text fields, and "+R",
to search only read-only fields. I suggest taking the
stack we've been working with and adding on
several cards with text fields: "appointments for

10/1/90", "appointments for 10/2/90", and so
on. If you'd like, make 31 cards. one for each
day of the month!

Date Code

After the usual startup code (preserve our direct
page space, get the pointer to the command line
text, get length of the command line text). I start
parsing out the command line (at the label
":parse1").

The first step is to set up the default find flags: I
want to search both read-only and editable
fields. However, if the user specifies either the
"+E" (editable fields only) or the "+R" (read-only
fields only) flag, I'll turn some bits off in this
flag. (Note that bit zero. which controls whether
or not the search is case-sensitive, is left at zero
[case insensitive) for this XCMD.)

Parsing the flags works much the same as it did
in the Dial XCMD--I look for the "+E" flag, then
the "+R" flag, and turn off bits one or two in the
find flags, if I find either.

Once I have the find flags set up based on the
command line flags ("+E", "+R", etc). I'm ready to
get the text to search for. Since I'm after the
current date, I can ask the toolbox for the time
and date, and it will give it to me in an ASCII
form (at the label ":cont").

According to the Apple IIgs Toolbox Reference:
Volume 1, page 14-16, _ReadAsciiTime always
returns the date as the in eight characters of the
buffer I specifY, in the format "xx/xx/xx" (the
month, day, and year positions can move
around based on the user's control panel
settings). However, if one of those three values
(month, day. or year) are a single digit, they're
padded with a single space to right-justify them
within their field. What all this means is, the
sixth day of September will be returned as " 9 I
6/90" (assuming the control panel format is
mm/dd/yy) instead of "9/6/90". As a result, the
next section of code (at the label ":killSpcs")
'collapses' the date by removing any spaces in
the first eight characters.

Now that both parameters are set for the find
call (I have the flags and the text to search for).
it's time to return control to HyperStudio and
execute the find. At the label ":getEntry", I get
the address of the HyperStudio entry point, then
push the parameters for the find call on the
stack and load the X register with 8.

At the label ":setReturn", I push our return

address on the stack and then HyperStudio's entry
point on the stack, as well. Then, executing an RrL
(right before the label ":rtnAddr") causes control to
be passed back to HyperStudio. When HyperStudio
RTLs back to my code, it will find my retum
address on the stack and come right back to the
label ":rtnAddr". (These convolutions--pushing my
retum address, pushing HyperStudio's address,
RTLing to it--are used in order to avoid self
modifYing code. They actually aren't as confusing
as they may seem. If you'd like, think of it as the
inner working of a JSL.)

Finally, the XCMD is finished (at the label ":done")
and the usual clean-up is done before returning
control to HyperStudio again.

I hope these four examples have given you a small
taste of what's possible with HyperStudio XCMDs.
You've got the knowledge to go out and create your
own XCMDs to do almost anything--they can work
with add-on hardware, and they can still interface
with HyperStudio. The power of HyperStudio is
already extensive, and when you add XCMDs, there
are almost no limits at all.

References:

GEnie, the General Electric Network for
Information Exchange
401 N. Washington St.
Rockville, MD 20850
1-800-638-9636

CompuServe Information Services
5000 Arlington Centre Blvd.
Columbus, OH 43220
1-614-457-8600

Both GEnie and CompuServe have large libraries of
HyperStudio stacks, as well as the Exerciser source code
examples (in languages besides assembly) and other
miscellaneous XCMDs.

Roger Wagner Publishing, Inc.
1050 Pioneer Way, suite 'P'
El Cajon, CA 92020
1-619-442-0522

You can order the HyperStudio XCMD Exerciser disk (with
sample code in the five languages) for $10. You can also get
the HyperStudio XCMD Library Disk Volume 1 (by Ken
Kashmarek) for $49.95. The XCMD Library Disk includes the
Master XCMD and a set of 19 new XCMDs for HyperStudio to
experiment with.

fW'Ii!~h!t~lii;!i~t~:fr~~· ~~~~a~~
.,,,,;,,.,., l[·'ro Publishin~ I

ProDOS Power from Applesoft
by Jerry Kindall

Bo may know diddly, but Jerry knows Applesoft
and BASIC.SYS1EM. So much so, in fact, that he
was commissioned to produce MicroDot (a
BASIC.SYSTEM replacement}, for Kitchen Sink Soft
ware. Using MicroDot and/ or the commands intro
duced in this article can reaUy provide some power
andjlexibUity toApplesoft disk routines. - Editor.

At the heart of ProDOS is the Machine Language
Interface, or MLI. Through the MLI, ProDOS
accepts all its commands. No command comes to
ProDOS but through the MLI, you might say.

BASIC.SYSTEM has as its primary task translating
Applesoft programs' disk commands into MLI
speak. It's possible to bypass BASIC.SYSTEM and
issue commands directly to the MLI from an
Applesoft program, and it only requires a few bytes
of machine language code to do it. Along the way,
I'll share some things I've learned about
BASIC.SYSTEM and stuff like that. I'll do it all in a
cookbook format (more or less) so you can use
these routines without having to know (or care)
how they work.

The MLI Caller

Let's develop a set of Applesoft subroutines to do
MLI work for us. The first thing we need is an
initialization subroutine that POKEs in the short
machine language routine we'll use to call the MLI.
Here's what the MLI caller looks like in pidgin
assembler:

jsr $BFOO
$00
$0000
sta $FF
rts

; call the MLI
;MLI command goes here
;addr of parmlist goes here
;store error code in 1oc 255
;back to BASIC

This 9-byte machine language thing {Editor: OhJ

Jerry, I love it when you talk techie) is completely
relocatable. Our setup routine will look at the
variable MLI to find out where it should POKE the
machine language code -- if MLI is zero, we'll
assume a default value of 768. the beginning of
page 3.

1000 REM [Applesof t MLI Rou tines]
1010 REM --- ------------ ---------
1020 REM Initializat i o n and setup
1030 REM Install MLI Caller ML rout ine
1040 IF MLI = 0 THEN MLI = 76 8
1050 POKE MLI,32: POKE MLI+1,0 : POKE
MLI+2,191
1060 POKE MLI+3,0: POKE MLI+ 4,0: POKE
MLI+5,0
1070 POKE MLI+6,133: POKE MLI+7,255: POKE
MLI+8,96
1080 DEF FN PK (X) PEEK (X) + PEEK
(X+1) * 256
1090 DEF FN HI (X) I NT (X/256)
1100 DEF FN LO (X) X - FN HI (X) * 2 56
1110 RETURN

Here we also set up some user-defined functions
for dealing with two-byte PEEKs and POKEs. FN
PK returns the two byte value at the address
specified. FN HI and FN LO return the high and
low bytes of the value specified, just what you need
when you're getting ready to POKE the address of
something into a pointer somewhere. If you're not
using user-defined functions in your Applesoft
programs for formulas you use over and over,
you're missing out.

Now we need another bit of BASIC "glue" to h andle
the actual MLI call.

1120 REM Call the ML I pleas e

8/lltS

1130 POKE MLI+3,CMD: POKE

Figure 1: Global Page Parameter List List
MLI+4,FN LO (PARM): POKE
MLI+5, FN HI (PARM)
1140 CALL MLI: ERR= PEEK

(255): RETURN

This code assumes CMD and PARM
have already been set up with the
MLI command number and address
of the parameter list, and returns the
MLI result code in ERR (zero means
no error).

Open Sesame

One of the fundamental things you
want to be able to do with a ProDOS
MLI call is to open a file for reading
and writing. Doing this with a
ProD OS MLI call is a little bit silly.

Hex

$BEAO
$BEAG
$BEAF
$BEB4
$BEC6

$BECB
$BED1
$BEDS
$BEDD

though, because BASIC.SYSTEM already does that
for us just fine, and it moves our variables down
and allocates us a buffer, as well (which we'd have
to take care of ourselves if we called the MLI
directly). We'd also have to somehow get the
pathname of the file into the format that ProDOS
expects, which we'll get to eventually but not right
now.

But doing it the BASIC.SYSTEM way also has a
couple of drawbacks. First, you have to know in
advance the type of the file you're opening. This
isn't a problem because we'll write a routine in a
second to find out a file's type, but the ProDOS MLI
doesn't actually care. In fact, BASIC.SYSTEM has
to do a GetFilelnfo call to know whether or not you
specified the right filetype for the file, and we'll do
another one to find out the right filetype so we can
fake BASIC.SYSTEM out.

Second, and more importantly, since
BASIC.SYSTEM assumes you're opening a file on
which you'll be doing reads and writes of regular
text data, it sets the ProDOS newline mode to look
for the carriage return when reading. What this
means is when you read from a file using MLI
commands, you might get all the data you asked
for, unless there's a carriage return somewhere in
the data, in which case you'll get all the data up to
and including the carriage return. We want to
turn this mode off so we can do regular binary I/0
on the file.

1150 REM Open a file and turn off Newline
1160 POKE 48851,0: PRINT CHR$(4);"0PEN
";F$;" ,T";T$: POKE 48851,127
1170 REF = PEEK (48848): RETURN

Dec

48800
48812
48815
48820
48838

48843
48849
48853
48861

MLI call It's used with

Create
GetPrefix, SetPrefix, Destroy (delete)
Rename
GetFilelnfo, SetFilelnfo
Online, SeMark, GetMark, SetEof, GetEof,
SetBuf, GetBuf, Quit
Open
Set Newline
Read, Write
Close, Flush

To use this routine, set F$ to the name of the file to
open, and T$ to the type of the file. (You can use
hex numbers like "$FF". decimal numbers like
"255", or mnemonics like "SYS", but they've got to
be in a string.) The routine will return the
reference number of the file BASIC.SYSTEM just
opened in REF. (ProDOS assigns this number; you
have no say in it.) You will need this number later
to access the file; the MLI knows files by their
number, not their name.

What was I PEEKing and POKEing there?
BASIC.SYSTEM has a few MLI parameter lists in
its global page (which begins at $BEOO), and I'm
simply borrowing the SetNewline parameter list: In
case you're not familiar with MLI parameter hsts.
each time you call the MLI you set up an area of
memory containing the parameters of the
command you want to execute. Then you tell the
MLI where this parameter list is and it looks there
for the information it needs. Since BASIC.SYSTEM
calls the MLI, it has a number of MLI parameter
lists, and the folks at Apple were good enough to
document the addresses of these parameter lists
(c.f. Figure 1)

As you can see, many of the lists are used with
more than one type of MLI call, since the calls in
question require the same number of bytes for the
parameter list, or have parameters in common, or
whatever. The PEEK (48848) grabs the reference
number of the file just opened from the Open
parameter list -- the referece number is returned at
relative byte +5 of the Open parmlist. The POKEs
to 48851 set the mask byte for the SetNewLine
parameter list to zero, then change it back to its
usual value ($7F). It's often important to put
things back the way you found them when using

8/ll8

BASIC.SYSTEM's parameter lists, because, in some
cases, BASIC.SYSTEM depends on them being set
properly to operate correctly. All manner of evil
might happen if you mess up. Obviously you don't
have to be quite as careful with the areas which
are used for multiple functions, as BASIC.SYSTEM
sets these up as necessary for each call.

A complete breakdown of what each type of
parameter list contains is beyond the scope of this
article. Both Apple's ProDOS 8 reference manual
and Beneath Apple ProDOS include this
information, and any serious ProDOS hacker
should have at least one of these two books. If you
have neither, get one ASAP.

I've Got Your Number

Now that we've got the file open and know its
reference number, we can now do all sorts of
obscene things to it that BASIC.SYSTEM would not
normally allow. Let's find out how long it is with a
GetEof call. ("Eof' is a Martian word meaning "End
of file".)

1180 REM Get file length
1190 POKE 48839,REF: CMD = 209: PARM =

48838: GOSUB 1130
1200 LN = FN PK (48840) + PEEK (48842) *

65536: RETURN

This little routine tells you the file's length in bytes.
We POKE the reference number we got from the
OPEN routine into the parameter list, then do the
call. After the call. the length of the file is stored in
three bytes. in relative bytes +2 through +4 of the
parameter list, in the usual backwards ProDOS
order. (ProDOS needs three bytes because a file
can be up to 16 megabytes in length.) We might
want to check ERR to make sure the call was
successful, but if the file opened without error,
there's no reason for the GetEof call to fail.

Why might we want to do this, anyway? Well,
suppose we were writing a file copy routine in
BASIC. We might just need to know how long the
file is in bytes so we know how many passes are
required to copy the entire file with the memory
buffer we have available. Or maybe we want to
check that a particular BIN file is 8192 bytes long
(a hi-res picture, doncha know) before loading it.

One cheap trick we could pull is to simply close the
file. BASIC.SYSTEM allocated us a lK buffer for
the file. We can PEEK this buffer's address out of
the Open parmlist. If"we close the file through the
MLI, BASIC.SYSTEM won't know about it and will

keep that memory reserved. Then we can use that
memory for something else. There are much better
ways to reserve memory under BASIC.SYSTEM.
which is why I called this a cheap trick. There are
other drawbacks too, so I don't reccommend it, but
it's kind of fun to contemplate, isn't it?

The Two Rs

We can, of course. read from and write to our open
file. This would be, essentially, the same as a
BWAD. We can even write a routine to move the
position-in-file pointer to an arbitrary location,
giving us random access BLOAD and BSA VE
capabilities. We already have random-access
BLOAD and BSA VE capabilities with the B
parameter, though, so what's the advantage? No
particular advantage, until you start performing
multiple random accesses to the same file. BLOAD
and BSA VE open the file each time such a read or
write is performed. With our MLI caller, we open
the file once. An OPEN call adds quite a bit of
overhead to BLOAD and BSAVE. which we save by
calling the MLI directly.

A good example of a program in which this would
be useful is John Link's nifty SuperPatch, an
AppleWorks patch program. As part of its
operation, SuperPatch checks out AppleWorks
patch locations and reports to the user whether or
not each patch is installed. SuperPatch uses
BLOAD and the B parameter to perform this task.
By using the MLI caller, we could speed this up
significantly. Let's write some routines to let us do
random-access BLOADs and BSA VEs.

1210 REM Set position-in-file to BYTE
(changes variable BYTE)

1220 POKE 48839,REF: POKE
48842,BYTE/65536: BYTE = BYTE
PEEK(48842)*65536

1230 POKE 48841,FN HI (BYTE): POKE
48840,FN LO (BYTE)

1240 CMD = 206: PARM = 48838 : GOSUB 1130:
RETURN

The calculations in the above routine look
complicated because we have to handle not only
the high byte and the low byte of the position-in
file pointer, but also a middle byte. ProDOS
supports files of up to 16 megabytes in length, so
three bytes are needed to specifY a byte position
within the file. I handled this in my routine by
POKEing the highest byte first and adjusting the
variable BYTE to "strip out" the highest byte. Then
I used the regular FN LO and FN HI on what was
left over. I do a SetMark MLI call once the parm

list is set up properly.

1250 REM Set position then fall through
to Read

1260 GOSUB 1220
1270 REM Read NUM bytes from file into

memory at ADR
1280 POKE 48854,REF: POKE 48855,FN LO

(ADR): POKE 48856,FN HI (ADR)
1290 POKE 48857,FN LO (NUM): POKE 48858,

FN HI (NUM)
1300 CMD 202: PARM = 48853: GOSUB 1130
1310 NUM = FN PK (48859): RETURN

The Read routines above are fairly straightforward.
For convenience, I provided two entry points. If
you enter at 1260, the SetMark routine is
automatically called first, allowing you to simulate
a random-access BLOAD by setting NUM, ADR.
and BITE appropriately and calling one entry
point. The second entry point (1280) just starts
reading from wherever the position pointer
happens to be. NUM is modified at the end of the
routine to be the number of bytes actually read.
which may be less than than requested if there
wasn't enough data left in the file to fulfill the
request. ProDOS does not consider this an error
condition, so you should check NUM to find out if
you got all the data you asked for.

1320 REM Set position then fall through
to Write

1330 GOSUB 1220
1340 REM Write NUM bytes from memory at

ADR into file
1350 POKE 48854,REF: POKE 48855,FN LO

(ADR): POKE 48856,FN HI (ADR)
1360 POKE 48857,FN LO (NUM): POKE

48858,FN HI (NUM)
1370 CMD = 203: PARM = 48853: GOSUB 1130:

RETURN

The write routines are almost identical, with two
entry points, one to simulate a random-access
BSA VE and another to simply perform a bulk
memory write to the current position-in-file
pointer. By the way, with all three of these
routines you should be checking the ERR variable
on return to make sure no errors ocurred.

Relativistic Limits

I'm running out of time and space for this article,
but I promised you a routine which would return a
file's type for use with the OPEN routine. For this
task, we need to use the ProDOS GetFileinfo call.

As it turns out, BASIC.SYSTEM already has a
command for doing a GetFileinfo call. It's called
VERIFY. Of course, usually this command is used
only to verifY that a particular file exists, but it
actually returns a wealth of valuable information in
BASIC.SYSTEM's GetFileinfo parm list. For now,
we'll just PEEK out the file type.

1380 REM Get file type into T$
1390 PRINT CHR$(4);"VERIFY ";F$: T$

STR$ (PEEK (48824)): RETURN

Let's also add:

1144 REM Get file type and fall thru to
Open

1145 GOSUB 1390

This gives us one entry point which will get the
file's type and open it for us, just like we did with
the read and write routines. It's not on an even
line number anymore; guess I wasn't thinking
ahead enough.

Since I ran out of spacetime for this article, I'll
have to write a sequel. In the next episode, I'll
show you how to do a number of things, including
PEEKing out all the GetFileinfo info (and
deciphering the date format). changing a file 's info
with SetFileinfo, storing a ProDOS string in
memory without using POKE (which we'll need for
SetFileinfo), a couple of nifty tricks with
GetMark/ SetMark/ GetEOF / SetEOF, reading a
bunch of info from the ProDOS and
BASIC.SYSTEM global pages, listing all online
volumes, and much, much more. In fact. there are
so many fun things you can do with
BASIC.SYSTEM and ProDOS that I might even
need a third article to cover them all.

See you then!

r1~© ©®~J])m1S@tr ~~il@§
665 West Jackson Street, Woodstock, IL 60098

Mon-Frl, 9-6 CST (800) 869-9152 (815) 338-8685 Sat 12-5 CST

Memory
GS-4 Memory Board
Ok $49 1 Meg $99
2 Meg $166 4 Meg $289

Chinook RAM 4000
Ok $75 1 Meg $139
2 Meg $199 4 Meg $319

GS-Sauce SIMM Board
Ok $89 1 Meg $161
2 Meg $230 4 Meg $369

GS Ram+
1 Meg $212 2 Meg $279
3 Meg $344 4 Meg $411
5 Meg $475 6 Meg $535

Checkmate MemorySaver $119

A 11 memory is new and has a
5 year warranty.

Apple 1 Meg SOns exp. set $67
SIMM expansion set $69
Apple 256k 120ns exp. set $18
Apple 256k X 4 exp. set $19

Accesories for GS
Transwarp GS 7 Mhz $279
Sonic Blaster $96
VisionaryGS Digitizer $279
RamFast 256k DMA SCSI $197
Sound System II speakers $99
System Saver GS $69
Conserver GS $89
A+ Optical Mouse ADB $87
Cordless Mouse ADB $109

GS Hardware
• Apple IIGS ROM 01 CPU $649
Apple IIGS 1 Meg CPU,
keyboard and mouse $819
Apple Color RGB Monitor $447
Apple IW II w l32k buffer $449
Magnavox RGB Monitor $319
Fortris ImageWriter
compatible printer $229
HP DeskJet+ 300 DPI! $599
JE 3.5" Drive upgrad~ble
from 800k to1.44Meg
AMR 3.5" Drive
AMR 5.25" Drive

$219
$183
$149

Software
Utilities

Copy II Plus v. 9.0 $25
Print Shop GS $27
ProSel 8116 $66
Programmers's Online
Companion $37.50

Vitesse Salvation Series:
Guardian- HD Backup $29
Renaissance- Optimizer $29
Exorciser- Virus Detector $26

Graphic Disk Labeler v.2.0
Print Color Disk Labels on

IW II in 320 and 640 modes!
$24.50

Business
AppleWorks GS $212
Manzanita Businessworks $294

Education
Designasaurus GS $33
Geometry GS $56
Talking Once Upon a Time $34
StudyMate- Grade Booster $33

GS Numerics
A complete math program for
high school, college students

and professionals
$104

(Zip GS 8 Mhz $269)

Entertainment
FutureShock v.2.0 $54
Heatwave Offshore Racing$37
Test Drive II: The Duel $34
Grand Prix Circuit $36
Blue Angels Flight Sim. $37
Third Courier $37
Jam Session $32.25
Task Force $29
California Games $14.50
Qix $25
Rastan $25
Arkanoid I or II $25
Chessmaster 2100 $37
Tunnels of Armageddon $32

GS Starter System
• Apple IIGS 1 Meg CPU,

keyboard and mouse
• Magnavox RGB Monitor
• Fortris ImageWriter

compatible printer
• AMR 3.5" Drive
• Mouse pad
• Box of 10 Maxell 3.5" Disks

$1599

GS Power System
• Apple IIgs 1 Meg CPU,

keyboard and mouse
• Apple Color RGB Monitor
• Apple ImageWriter II with

32k buffer
• Apple High Speed DMA SCSI
• AMR 40 Meg GS Partener HD
• Chinook RAM 4000 w I 2 Meg
• AMR 3.5" Drive
• Mouse pad
• Box of 10 Maxell 3.5" Disks

$2959

Modems
USR 14.4 kbs Courier
Cardinal 2400 baud
Supra 2400 baud
Prometheus Promodem
internal 2400G

HST$589
$109
$109

$144

Hard Drives
Chinook CTlOO 16k cache $780
UniStore 80 Meg HS HD $529
UniStore 60 Meg HS HD $474
AMR GS Partner (0 Footprint)
40 Meg $420 60 Meg $640
80 Meg $700 100 Meg $876
AMR 45 Removable HD $769
CMS 60 Meg HD $539
Apple DMA SCSI w I purchase
of HD: $96 Without: $101
All HDs come formatted w I GSOS or
Mac system software, and 5-10 megs of
PD, Share/Freeware,NDAs, CDAs, and
!NITs .

(I n n e r Express $85)

Prices subject to change without notice. Returns
within 15 days with no restocking fee. IL residents
add 65~. FAX orders and receive 2nd day air
upgnd~ (815) 338-8597

OverScan
by David Kopper

What is overscan? It is the process of 'drawing' a
set of lines in the screen border. Originally, I
thought this was an impossible task. The ACS
demo from the French FTA group changed my
mind, however. [The FTA group released a very
impressive disk that had a smaU overscan
demonstration. -ed] My next thought was that it
would be difficult to program (i.e. lots of ugly
interrupt service routines). Then, I thought that
even if it were possible and not too ugly, it couldn't
be done without breaking all the rules.

Everyone I spoke with seemed to come to the same
general conclusions. This article is the result of my
attempt to see if you really can 'draw' in the screen
border.

How to Overscan

The 'trick' to overscan is that you change the
screen border color at exactly where you want the
line 'drawn' on the screen border. (Because of this,
you can only effectively 'draw' horizontal lines in a
single color in the border.) There are several
problems that I had to solve to be able to do this.
The first is, how can I change the screen border
color?

Unfortunately, there are no tool calls that can be
used to change the border color. I have to change it
by storing the new color in the screen color register
at location $C034 (using a read, modify and write
sequence of instructions, in order to preserve the
bits that I am not modifying). The screen border
color is the low four bits, so we'll preserve the high
four bits of the byte.

The next question is, how can I change the screen
border color at exactly the right time?

Super Hi-Res

Before I answer that, I need to explain some details
about the Super Hi-Res (SHR) graphics screen and
interrupt processing.

The Video Graphics Controller (VGC) refreshes the
video screen 60 times per second. Each refresh
cycle starts at the top of the screen and redraws

the entire screen, one line at a time (including the
screen border).

The SHR screen has some additions to it that make
it more interesting and more difficult to program
than the other display modes. Each row of pixels
on the SHR screen is referred to as a scan line.
Each scan line has its own control byte,
appropriately named Scan line Control Byte, or
SCB. The SCB has the following structure:

Bit 7: 320- or 640-pixel mode
Bit 6: Generate a scan line interrupt or not
Bit 5: Enable fill mode or not
Bit 4: Reserved
Bits 3 to 0: Palette number for this scan line

The bit that grabbed my interest was bit six. If I set
bit six (generate scan line interrupt) to a one, and
enable scan line interrupts, then the VGC will
interrupt the CPU exactly when the scan line is
about to be drawn.

The second problem has now evolved into: how do I
process a scan line interrupt? Or, in more general
terms, how does the IIgs process interrupts?

Interrupt Processing

An interrupt is a distraction that once you do
something about it, it goes away. The same
definition applies to your Ilgs.

Interrupts occur whenever something happens that
the CPU has to do something about. Your mouse,
the serial ports on the back of your Ilgs, pressing
CTRL-APPLE-ESC, the vertical blanking interrupt
of the SHR screen, and many other things cause
interrupts.

How does the Ilgs handle an interrupt? When an
interrupt occurs, the CPU stops what is currently
is doing and saves enough information to resume
where it stopped. The next step is to find out what
caused the interrupt and to do whatever is
necessary to process it. The interrupt manager is
in charge of doing this. The interrupt manager
calls each of its interrupt handling
routines/vectors in order of priority (this how serial

port interrupts are handled before mouse
interrupts) . Once an appropriate handler is found
for the interrupt, it is called, the interrupt is
handled, and the interrupt manager returns
control to the CPU.

The interrupt handler that we're interested in is
the scan line interrupt handler. By setting up our
own scan line interrupt handler, we can change
the screen border color at eXactly the right time.

The Code

Remember, this demo is primitive! It was
constructed just to show how to get overscan
working using toolbox calls. I developed this demo
using the ORCA/M assembler with the APW
interface files for System Disk 5.0 on my ROM 01
IIgs, using System Disk 5.0.2. I have also run this
demo on a ROM 03 machine.

The Main, Startup_Tools and Shutdown_Tools
routines are just glue to get the demo running. The
only additional comment I'll add is that the
memory attributes passed to _NewHandle are

intentionally coded to be a sum of attributes. The
reason is that if I ever port a program from my IIgs
to some other computer, I would never remember
the significance of $C015. The addition of all the
attributes might remind me of what I was trying to
get _NewHandle to allocate.

Startup_Demo is the routine that really does most
of the hard work. Its goal is to setup my scan line
interrupt handler and enable scan line interrupts
on the two scan lines where I will change the bor
der color.

Shutdown_Demo is the opposite of Startup_Demo.
Its main purpose is to restore everything back to
the way it was when this demo was started. This
includes resetting the two scan lines, restoring the
system scan line interrupt handler and restoring
the original screen border color.

The EventLoop routine is my simple event loop
which will simply wait for a key to be pressed. In
your program. you'd probably use _GetNextEvent
instead of checking the keyboard strobe directly.

ScanLineintHndr is my scan line interrupt handler.

Figure 1: An Interrupt Handling Flowchart

A 16 bit program
is executing ...

The Interrupt Manager saves state at the
time of the interrupt (accumulator, registers,
processor status, processor speed, direct
page, stack pointer, etc.

... the program continues without
ever realizing anything happened.

The interrupt was claimed and cleared by
one of the handlers*. The Interrupt Mgr
restores the state of the computer to
that which existed at the time the interrupt
occurred.

*or else an unclaimed
interrupt error occurs

The Interrupt Manager dispatches control to each of
the interrupt handling routines in an attempt to clear
the interrupt. The routines are all called through their
vectors (a JSL via the JMP [int handler]).

Interrupt Handlers

Apple Talk

scanline d vertical blanking
soun

other

8/Jl(6$

It is called by the interrupt manager with both the
accumulator and x/y index registers set to be 8
bits wide. This routine sets the border color to the
next border color in the border color table, then
clears the interrupt and returns. The scan-line
interrupt is cleared when bit 5 of the VGC
interrupt clear register is set to zero.

Notes and Warnings

Overscan will only work while the SHR screen is
being displayed. Scan-line interrupts do not occur
in any other graphics mode.

While 'drawing' in the screen border with overscan.
the mouse cursor can Nar be shown. There are
two reasons for this restriction: first, the mouse
cursor is drawn by the tool box during the
processing of scan line interrupts. Since I replaced
the scan line interrupt handler vector with my
own, the tool box won't get the chance to draw the
cursor.

The other reason is that the mouse cursor is drawn
one scan line at a time. The tool box has to process
as many scan line interrupts as the cursor is scan
lines high. Since the scan-line interrupt routine
doesn't expect the 'extra' interrupts, the border
colors would probably not be what you expected.

An anomaly I've found is that if you enter the

OverScan Listing:

;**

OverScan

Description: This program is just a demo that
will 'draw' a line in the screen
border area.

The code presented below will
'draw' a line in the screen
border . However, the following
are the conditions to avoid while
such 'drawing' is occuring:

* Do NOT enable the mouse curso r
(the cursor is drawn during s can
line interrupts - and since we
don't call the system scan line
interrupt handler, the cursor
would not appear . Even worse
is that the border col or would
be changing when we didn't want
it d o (based on the mouse
position)).

* Do not disable interrupts.

Notice: Error handling in this demo is VERY
primitive.

Classic Desk Accesso:ry menu between the two Copyright (c) 1990 Ariel Publishing . Some
scan-lines, then the screen border colors will flip rights reserved.
from black with a blue line to blue with a black
line. This is because the border color index is not ;**
maintained ve:ry well (it simply flips the border
color from one to the next, not paying attention to
which scan-line interrupt is being processed). Read all the required macros/de f initions ...

Enhancement Ideas

Setting up a SHR title screen with overscan lines
joining part of the SHR picture would make a great
INIT segment of an application. I can even imagine
that games might want to use overscan to expand
the screen area they 'draw' on (such as a racing
game where the border color height shows how
much of the race course has been completed).

You could reset the border color index on each
vertical blanking by setting up a either a heartbeat
task or add a task to the run queue that runs ever
l /60th of a second (see Miscellaneous tool call
_SetHeartBeat or the new Desk Manager tool call
_AddToRunQ).

mcopy os.macros

copy 2/ainclude/ e16 .memory
copy 2/ainclu de/ e16 .misctool
copy 2/ainclude / e16 .quickdraw

Define the scan lines we will c h a nge the border
color on:

ScanLine 1 gequ 100
ScanLine2 gequ 110

Define the size of the stack this de mo will
create.

StackSize gequ $1800

; Define the ' special' locations we 'll be u sing:

KeyBoard gequ $e0c000 ;Keyboard character
KeyStrobe gequ $e0c010
BorderColor gequ $e0c034

; Keyboard strobe
;Screen backgrnd color
;VGC Interrupt registr
;VGC Interrupt Clear

VGCintReg gequ $e0c023
VGCintClr gequ $e0c032

IntFlag gequ $e0c046
; register
;Interrupt Flag -bit 3

is set during a VBL
; interrupt

; Finally, the direct page variable:

HandleLoc gequ 0 ; Used to deref a handle

;**

Main Start

Description: The main rtn - it will simply
call subrouttines in the right order.

;***************** *************************

using Data

Setup the data bank

phk
plb

Start the t ools then Initialize demo ...

jsr
jsr

Startup_Tools
Startup_ Demo

Draw a r ect t o make things more impressive

PushLong #TheRect ;long ptr t o rect
PushLong #PenPatt ;long ptr to pattern
FillRect

Wait for a key to be pressed

jsr Event Loop

We ' re done , s hutdown the demo and t ool s

Main

jsr
j sr

Shutdown Demo
Shutdown Tools

_ QuitGS QuitParms
rtl
brk $00

end

;***

Startup_Tools start

; Description: Load and start the needed tools.

:**

using Data

Start the tool locator, misc. tools, and the
memory manager.

_TLStartUp
bcs error

_MTStartUp
bcs err o r

WordResult
_MMStartUp
bcs error
PullWord ProgramiD

Create a privite user I D for this demo

lda ProgramiD
clc
adc #$0100
sta PrivateiD

Save whatever is in HandleLoc for a bit ...

lda
sta
lda
sta

HandleLoc
HandleTemp
HandleLoc+2
HandleTemp+2

Allocate the direct page space for a l l of
the t ools we 'll be usi n g :
three pages f o r quickdraw II

LongResult
PushLong #$0300
PushWord P rogramiD
PushWord

#attrLocked+attrFixed+attrNoCross+attrPage+
attrBank

PushLong #0
NewHandle

bcs error
PullLong HandleLoc

Start quickdraw II

lda [HandleLoc]
pha
PushWord #0 ; 320 mode
PushWord #0 ; def screen width
PushWord ProgramiD ; User ID

_QDStartup
bcs error

Restore HandleLoc to its previous values ...

error

lda
sta
lda
sta

rts

Handle Temp
HandleLoc
HandleTemp+2
HandleLoc+2

anop
brk $01

HandleTemp ds 4
end

Startup_Tools

;***

Startup_Demo start

Description: Perform application specific
initialization. This demo will
save the system interrupt mgr,
setup its own interrupt manager
turn scan line interrupts on &
set scan line interrupt bit on 2
scan lines (in the SCBs) .

Assumption: Interrupts are enabled!

;***

using Data

Save the system scan line interrupt handler
for later restoration.

LongResult
PushWord #intrptMgr

Get Vector
bcs error
PullLong SystemintMgr

Install the jump to the system interrupt
manager.

jsr IMSetup

Set the scan line interrupt vector to pt to
my scan line interrupt handler.

PushWord #intrptMgr
PushLong #MyintMgr

Set Vector
bcs error

Set the scan line interrupt bit on the two
lines where we will change the screen
background color.

scan_ints_on anop

PushWord #ScanLinel
WordResult
PushWord #ScanLinel

GetSCB
bcs
pla

error

ora #scbinterrupt
ph a

SetSCB
bcs error

PushWord #ScanLine2
WordResult
PushWord #ScanLine2

GetSCB
bcs
pla

error

ora #scbinterrupt
ph a

SetSCB
bcs error

Everything is setup - return to our caller

rts

error brk
end

Startup_Demo

$02

;**

Shutdown Tools start

; Description: Shutdown the tools we used.

;** ****

using Data

_QDShutDown

PushWord PrivateiD
_DisposeAll

PushWord ProgramiD
MMShutDown

MTShutDown

TLShutDown

rts

end
Shutdown Tools

;**

Shutdown Demo start

Description: Shutdown facilities that this
demo setup . This involves
turning o ff the scan line
interrupt bits in two SCBs,
turning off scan line interrupts
(but only if they were n ot enabled

when this program started),
restore the system scan line
interrupt vector and finally,
restore the screen border color.

;******** **********************************

usi n g Data

Reset scan line interrupt bit of the sca n
line control bytes on lines where we were
changing the border color.

PushWord t ScanLinel
WordResult
PushWord tScanLinel

GetSCB
bcs
pla
and
pha

error

t($ffff- s cbinterrupt)

SetSCB
bcs error

PushWord tScanLine2
WordResult
PushWord tScanLine2

GetSCB
bcs
pla

error

and t($ffff- scbinterrupt)
pha

SetSCB
bcs error

Restore the system interrupt manager.

Pus hWord t i ntrptMgr
PushLong Syste mint Mgr
Set Vector

bcs error

Restore the screen border color, getting the

screen border color from battery backed up
ram.

Note: The BorderColor location contains the
border color in the low four b its and
part of the real time clock in the high
four bits.

WordResult
PushWord tdspBrdColor

ReadBParam
bcs error
PullWord OldBorderCl

long a off
sep t$20
lda >BorderColor
and t$f0
clc
adc OldBorderCl
sta >BorderColor
long a on
rep t$20

The border color demo h as been shutdown
return to our caller

rts

error brk $03

end Shutdown Demo

;***

Event Loop start

Description: This is t he eventl oop for this
demo . All we ' re going to do is
watc h for a key press - on ce we
see one, we'll clear the keyboard
strobe and return to our caller .

;** *

; Now check to see if there is a key .

loop lda >KeyBoard
bpl loop
sta >Ke y Strobe
rts
end Event Loop

;***

MyintMgr start

; Description: This is my Interrupt Ma nager.

8/1l.(6

We are replacing the regular
interrupt manager, because it
isn't fast enough for us.

This interrupt manager only
processes scan line interrupts
& vert blanking interrupts.
Any other interrupt is passed to
the original interrupt manager.

The border color will change
during the processing of a scan
line interrupt.

Assumption : We are in native mode with the
return address/processor status
pushed on the stack.

;***

using Data

clc
xce
sep #$20
php
pha
phx
longa off

Check to see if interrupt is a scan line
inte rrupt .

Note: If bit 5 of the VGCintReg is set then
this interrupt is for a scan line.

lda
and
beq

>VGCintReg
#$20
VBLCheck

Delay 'till VGC gets to the beginning of
the scan line (Scan line interrupts occur
at the right end of the screen) .

delay
ldx
dex
bne

Jt$12

delay

Set the screen border color to the next color
in the border c o lor table.

l da >Col orindex
tax
lda >BorderColor
and Jt$f 0

adc
sta
lda
sta

>ColorTable,x
>BorderColor
>NextColor,x
>Color Index

Clear the scan line interrupt by clearing
the scan line interrupt bit in the VGC
interrupt clear register.

Note: Clearing bit 5 of the VGCintClr
register

will clear the interrupt from the VGC.

lda
and
sta

>VGCintClr
($ff-$20)
>VGCintClr

; Since we are the inter~Jpt manager, the way
t o

return from this interrupt is to pop all the
saved information from the stack and RTI

back
to the interrupted program.

clc
plx
pla
plp
rti

Well, t he interrupt wasn't caused by a scan
line. Lets check t o see if it was caused by
a vertical blanking interrupt.

Note: If bit 3 of IntFlag is set then
this interrupt is for a Vertical
Blanking.

VBLCheck a nop

lda
and
beq

>IntFlag
Jt$08
Systemint

Set Colorindex to zero - this will cause the
scan line interrupts to change the border
colors i n the s ame sequence for each t ime
the scree n is refreshed.

lda JtO
sta Color Index

Continue processing of t he VBL i n terrupt
in t he system interrupt manager .

bra Systemint

c lc ;Interrupt is not a scan line interrupt, but

8/11.8

;it may have been a Vertical BLanking
;interrupt. We really don't care, lets just
;pass this interrupt onto system interrupt
;manager.

Systemint anop

IMVect

plx
pla
plp
xce

jnp
rtl

$123456

;Tell assembler that we're done working in
8 bits.

longa on
longi on

;***

IMSetup entry

Description: This little routine copies
system interrupt mgr vector
to JuMP instruction above.

;**

lda SystemintMgr
sta
lda
sta
rts
end

IMVect+1
SystemintMgr+1
IMVect+2

;**

Data data

Descr iption: This is data segment of this
demo program.

The only interesting data is border color
table & its index table. The above code
written so that it'd be easy to add more
border color changes. The 'only' changes are
to set the scan line interrupt bit f o r the
additional lines , add the additional border
colo r to the border color table and add a n ew
index to the index table (IE: f o r 3 colors
set the color index table up to be 1,2,0).

;**

; RECT defining the box we draw on the screen

TheRect de
i2' (ScanLine1+1) ,0, (ScanLine2+1) ,320'
PenPatt de 32h'4444' ;same blue as border

The color table is the set of colors that the
screen border will cycle through

ColorTable de i1'6,0' Blue, Black

Index table for which border color to display
with the next scan line interrupt.

NextColor de i1'1,0'

; Index of which border colo r to display next.

Colorindex de i1'0'

A temporary location for the border color
when we retrieve it from the battery backup
RAM.

OldBorderCl ds 2

Location to save the system interrupt manager
vector .

SystemintMgr ds 4

The User IDs created for this demo when it
runs.

ProgramiD ds 2

PrivateiD ds 2

; Quit parameters

QuitParms d e i2'2 '
de i4'0 '
de i2'0'

end

Letters

Losing Weight,
Scuzziness, and
Fame

Dear Ross,

Finally, a magazine with real Apple II hackers in
mind.

After all the trouble with postage and orders, I
finally received the disk and the magazine.
However, I did notice that the number of pages has
steadily decreased from July through September.

Now for a few comments on the September issue of
8/16. I congratulate Yvan Koenig for agreeing that
there is a problem with the High Speed SCSI card.
Good luck trying to convince Apple otherwise.
Their favourite buzzword seems to be "arbitration".
Perhaps 8/16 readers have comments on this. The
delay can be anything up to 8 seconds long, and
occurs every time you reboot. You can fix this by
inserting a BUS_INIT call (INIT code 5) on the boot
blocks, or in the ProDOS boot file. The init takes
about 2 seconds, but at least you can live with it.
(see my SCSI Part documentation for more details)

Plus, the START/STOP unit SCSI call is now
restricted to CD only. So much for apparent ANSI
X3.131-1986 compatibility, where STARr/STOP is
an optional command for direct access devices (ie.
all or none, not none or some). The only work
around is to code a "generic SCSI command" which
sends the STARr/STOP unit to the drive
(STARr/STOP unit is how you park heads on hard
disks without auto parking).

As a follow on from Yvan's next paragraph, I wrote
a utility last year (called ILTS) which allows you to
save your BRAM parms to the boot blocks. It is
included on the same disk which includes my SCSI
Part program, which I hear is currently doing the
rounds over there. Also on that disk, is my re
source manipulation utility, which was also written
last year, AND my Pixie program (again 1989)
which I use extensively instead of Nifty List (pre-
3.0 version anyway, as I haven't fully checked out

Dave's latest offering), as do many other Australian
developers. PLUS, my FREDA debugging tool,
which intercepts simple COP command calls for
displaying text and register values while a program
is running. And it's all FREEWARE!

I have included the disk with this letter in case you
want to offer some of them on the next 8/16 disk.

It was quite frustrating trying to distribute these
programs. As an example; I wrote SCSI Part in
about June 1989. I then sent it to various people
in Australia and the US, including A2-Central. It
wasn't until a couple of weeks ago, that someone
finally realised how handy it was, about six
months after I'd given up plugging it. Amongst all
the concem for the future of the Ilgs, it's
disappointing to find that the people in charge of
software libraries, or distributing information
about the Ilgs, continually ignore what's on offer
because they apparently don't have the lmowledge
to realise what's good and what aint! (Like long
sentences? I do.) It seems unless your name is rea
sonably welllmown, no one takes you seriously. I
suppose that's the advantage I have in Australia,
where I'm fairly welllmown.

Anyway, keep up the good work.

Richard Bennett,
Sydney, Australia.

Dear Richard,

Apple II folks are getting a little paranoid, I'd say.
though I guess it's understandable. It so happens
that your fu-st issue (July) was our thickest to date
and your last (September), was our thinnest. We've
been thinner than July both before and after.

1he reason for this bouncing around has little to do
with fmances. I tell our authors the same thing I
used to tell my writing classes when asked the age
old question, "How long?": "Long enough", I'd say,
meaning long enough to adequately and clearly
cover the material without verbosity. Thus our size
is somewhat a function of the length of the articles
in that issue.

September was shorter than fd planned due to a
canceled ad and a missed deadline {we didn't run
VaporWare last month).

In a nutshell, the length of the September issue was
more a function of article length and availability, not
fuiances.

Thanks for your program submissions. They shall
indeed be on our quarterly disk. In defense of the
fme folks at A2-Central, they get thousands of pro
grams and letters. That they can respond as well as
they do amazes me. It is sometimes dtffrcult to grasp
the quality or significance of a submission based on
a cover letter or even a quick perusal of the contents.
That's why a certain level of'1ame" does indeed add
a little credibility.

I've not had time to look over your programs, but
they really sound exciting. if it works out, I may fea
ture them in our ToolSmith column.

Glad to have you aboard. Thanks for the letter and
the goodies.

==Ross==

Macro Madness, Praise, and
Advice

Dear Ross,

I enjoyed your article "Magical Resources" in 8/16
Volume 1 Number 4. However, some of the macros
used are a mystery to me. Particularly, the "deref'
macro. Could you please print the contents of
these macros in a future issue of 8/ 16? I think
that it would be important in future articles for the
authors to give the macro definitions somewhere in
the text if it is their own macro or to list where to
find the macro definitions. I did find the Er
rorDeath macro on an Apple II Tech Note.

I would also like a more detailed explanation on
the PictCovert section of the "Magical Resources"
program listing. In particular, what is this
Linkin+O. .. Linkin+4, etc. The author did a very
good job on all other aspects of the program, but I
wish he could have explained the PictCovert sec
tion better.

One final point about 8/16 in particular that I
think is very important. Joe Jaworski did a fine job
telling the reader why the Resource Manager is im
portant. I only wish ofu.er authors would do the
same. I can't tell you how often I've tried to read

an article about programming where the author
launches into how to do it, but gives no introduc
tion as to WHY you would want to. Looking over
back issues of 8/16, I can see that most of the arti
cles do give good introductions, but if you look at
the last issue of CAlL A.P.P.L.E .. you can see a bad
problem. There is an article called, "Roll Your Own
Icons- Incorporating Icons into Your Applications".
Apparently the title of the article is the only hint as
to what the author will discuss. I've owned my Ilgs
since they first came out, but except for the Finder.
I've never seen what I would consider separate
icons anywhere. What does the author mean when
he says that it might be a good idea to "roll your
own icons?" How can I read an article that won't
even explain what's going on?

All articles should start with what exactly is going
on and offer reasons for doing these things. If the
"Roll Your Own Icons" article tells how to put little
faces or pictures in odd comers of my graphic
screen while my program is runing, then it should
have stated so at the beginning. But I have no pa
tience with articles that won't get to the point.

I'm very glad to see that the editing in 8 I 16 is a
good notch above that in CALL A.P.P.L.E. I'm look
ing forward to a long relationship with your firie
magazine.

Sincerely,

Raymond Ross
Reno, NV

Dear Raymond,

Thank you very much for your kindest of comments,
but it is notfalse humility for me to say that there is
much about CAlL A.P.P.L.E. that we aspire to and
have not yet attained. It was really a remarkable
publication.

Case in point: we blew it as far as the macros you
mentioned. Infairness to my editorial staff, it is an
easy thing to miss since deref, for example, is a
standard library macro in the Merlin assembler, but
is not under Orca/ M. I don't know about APW, but I
think you see the potentialfor confusion.

At any rate, here is the listing of some of the Picture
Show macros a purged tool call macros since I
know they are standard). I'm willing to bet that Joe
has a special fzle of his own macros that he has in
the AINCWDES folder. This allows him to scan for
standard macros in one fell swoop and grab any of
his own, too.

MACRO

&lab ERRORDEATH &text
&lab bee end&syscnt
pha
pea x&syscntl-16
pea x&syscnt
ldx it$1503
jsl $E10000

x&syscnt de i1'end&syscnt-x&syscnt-1'
de c"&text"
de i1' 13', i1' 13'
de c'Error is $'

end&syscnt anop
MEND

MACRO
&lab link &Sizeinput,&SizeLocals
&lab ANOP
AIF C:&SizeLocals, .a
LCLC &SizeLocals

&SizeLocals SETC 0
.a
linkin equ &SizeLocals+3
linkout equ linkin+&Sizeinput
tsc
sec
sbc it&SizeLocals
tcs
phd
inc a
ted
MEND

MACRO
&lab unlink
&lab ANOP
pld
tay
lda linkin-1,s
sta linkout- 1,s
lda linkin- 2 , s
sta linkout-2,s
tsc
clc
adc itlinkout-3
tcs
tya
cmp 1
MEND

MACRO
&lab wordspace
&lab ANOP
pea 0
MEND

MACRO
&lab longspace
&lab ANOP
pea 0
peaO

MEND
MACRO

&lab copylong &addr
&lab ANOP
lda 1,s
sta &addr
lda 3,s
sta &addr+2
MEND

MACRO
&lab deref &addr
&lab ANOP
lda &addr
sta <4
lda &addr+2
sta <6
lda [<4]
sta <0
ldy it2
lda [<4] ,y
sta <2
MEND

As you can see, the derej macro "derejerences" a
handle, meaning that it returns the actual memory
address the handle points to.

The references to Linkin+O ... to Linkin+4 have to
do with the "link" and "unlink" macros. These little
buggers create and tear down a structure called a
"stack frame".

A stackframe is simply a mechanism whereby pa
rameters and variables local to a junction, subrou
tine, subprogram, or procedure may be stored on
the stack and then discarded when finished. To
access one of the parameters or variables within
the stack frame, you look a certain distance from
the stack pointer.

That is where Linkin+O, etc. comes from. On page
16 Joe defines what variables live where, that is
where they reside on the stack relative to the
stack pointer when the "link" is established. Thus
they are EQUated to offsets from Linkin.

NOTE: There is a subtle yet serious bug in Joe's
code. Please check out the Insecticide notice for an
explanation.

As for your advice about article introductions - I
agree wholeheartedly. The WHY is just as impor
tant as the H OW. Letters such as yours help us
keep these fundamentals in mind.

Thanks! ==Ross==

KAT will sell no drive
before it's time ...
KAT will not ship a hard drive without first:

• Conferring with you about your entire system and setting the drive's interleave so as to insure optimal
preformance for you.
• Discussing the various partioning options and then setting them up to fit your specifications.
• Depositing 20 megabytes of freeware, shareware, the latest system software, and all sorts of bonus goodies
on the drive.
• Testing the drive for 24 hours before shipping it out.

KAT drives come in industrial-quality cases that have 60 watt power supplies (115-230 volts), cooling fans,
two 50 pin connectors and room for another half-height drive or tape back-up unit. We also include a 6ft. SCSI
cable to attach to your SCSI card. You get all of this plus a one-year warranty on parts and labor!

SB 48 Seagate 48 meg 40ms
SB 85 Seagate 85 meg 28ms
SB 105 Quantum 105 meg 12 ms

$549.99
$698.99
$849.99

Looking for an even hotter system? Call and ask for a quote on our 170,300, & 600 megabyte Quantum drives!

Soya wanna build yer own? Let KAT provide you with the finest parts available ...

SB Case 2 HH Drives 7w 5h 16d
ZF Case 1 HH Drive lOw 3h 12d
48 meg HD Seagate 40 ms 3.5" SCSI
85 meg HD Seagate 28 ms 5.25" SCSI
105 meg HD Quantum 12 ms 3.5" SCSI

$139.99
$169.99
$349.99
$469.99
$669.99

T-60 Tape Teac 60 meg SCSI
with hard drive

3.5" to 5.25" Frame
Cable 25 pin to 50 pin 6 ft.

50 pin to 50 pin 6 ft.

$449.99
$424.99
$ 12.50
$ 19.99
$ 19.99

Programmers! Check our prices on your favorite
development packages and accessories ...

Byte Works
Orca C $89.99
Orca M $44.99
Orca Pascal $89.99
Orca Disassembler$34.99

Other software and accessories:

Vitesse, Inc.
Excorciser, virus detection system$ 29.95
Renaissance, hard disk optimizer $ 34.95
Guardian, program selector and disk utilities
$34.95

Applied Eng. Transwarp GS $289.99
Keytronic 105 Key ADB Keybrd $139.99

Roger Wagner Publishing
Hyperstudio $94.99
Macromate $37.99

Stone Edge Technologies
DB Master Pro $219.99

Quickie, terrific hand scanner (400 dpi, 16 grays)$249.99

Computer Peripherals
ViVa24, 2400 baud, 100% Hayes compatible modem
(comes with a FIVE YEAR Warranty) $139.99

1 meg SIMMs 80 ns $89.99
1 meg X 1 80 ns 8/$79.99

Call the KAT at (913) 642-4611 or write: KAT, 8423 W 89th St, Overland Park, KS 66212-3039

NOTE: This column is primarily for entertainment purposes and statements expressed
within may be based on rumor or innuendo. Furthermore, the views of the author do not
necessarily reflect the views of 8116 and/or its editorial staff.

by Murphy Sewall

From the September 1990 APPLE PULP

K-12 Macs.
The first two models in Apple's long awaited line of low cost Macs are set for an October 15 unveiling. The
monochrome "Mac Classic" is a close cousin of the popular SE with an 8 MHz 68000 CPU and a 3.5 inch 1.44
Mbyte SuperDrive. Apple has not yet decided whether to include one or two Mbytes of RAM for the $1,295 list
price. The more powerful color machine, codenamed "Pinball," will be a modular design closely resembling the
Apple llgs. Priced between $3,000 and $4,000 with a SuperDrive and 40 Mbyte hard disk, the Pinball is based on a
20 MHz 68030. After the first of the year, Apple will introduce a $2,750 20 MHz 68020 system currently known as
the Mac LC. All three K-12 machines have a single expansion slot which, in many cases, will be filled with the
optional Apple II card which Apple has been field testing for about two years. In a related move, Apple plans to
replace the llcx, possibly with a design that retains the current system's features but can be manufactured and sold
for a significantly lower price. -PC Week 6 August and Info World 13 August

Mac in a II.
Before Apple offers it's Jigs card for the Macintosh (after the first of the year), Cirtech promises to offer a Macintosh
card for the Jigs (in December). Cirtech's Duet uses a 68020 processor, a custom ROM, and up to 8 Mbytes of
RAM. Duet recognizes standard Apple peripherals using the llgs's 65816 for 1/0 processing. A socket is available
for an optional 68882 math coprocessor. Cirtech claims the system will outperform a Mac llcx. Price information is
not yet available. - A2-Central August

Apple II Marketing Strategy.
Late August is said to have been the prospective date for a decision on Apple's new marketing strategy. Advocates
for returning to the company's roots (computing for fun as well as for profit) are being listened to seriously by the
firm's most senior management. Apple is developing and testing new CPUs (plural), but the decision of when and
what to market depends on more than just technological issues. The unreleased llgs operating System Disk (5.03)
in use by Apple's support group at the recent KansasFest developers conference, appears to contain most of the
new features touted in early System Disk 6.0 rumors. Could it be that Apple has just decided to change the
designation for the next release? In addition to improved memory utilization (memory is no longer fragmented on
bootup), direct access to the modem port, and a few bug fixes, some interesting new tools also are included. - A2-
Central and notes found in my electronic mailbox

500 Word Per Minute Typing.
Caere Corporation will soon begin shipping the "Typist," a hand-held scanner bundled with character-recognition
software that uses keyboard interrupts to direct characters directly into any application. The 20K RAM resident
(desk accessory on the Mac, terminate and stay on the PC) Typist has a 300 dot-per-inch five inch scan head and
a virtually transparent interface. The Mac version ($695) is slated to ship in September and the PC version ($595)
will be available in the fourth quarter. -Info World 6 August

Insecticide Ml.croDot just$ 29.95
plus S2.50 S&ll

Thanks to the ever-vigilant Nate Trost for pointing
out the subtle bug in Joe Jaworski's "Magical"
Resources" article in the June 1990 issue. 1f
you'll get out your red pens and turn to page 15:
Joe's code pushed the resource ID followed by the
type. This is incorrect, but happened to work in
his particular program. His comments were
correct, but his labels were mixed up.

As page 45-56 of the Apple Jigs Toolbox Reference,
Volwne 3 points out, the correct order for the code
is really:

pea #0
pea #0 ;long word result space

* word length resource type first
pushword resType

* then long word resiD you' ve assigned
pushlong res iD

Just 2.5 K in size, but more powerful than BASIC.SYSTEM.
Imagine doing BASIC overlays simply by specifying the file
name and the line number where you want to overlay. How
about loading an array of directory names at machine lan
guage speed. You get this and total control over ProDOS
that is impossible with BASIC.SYSTEM. Works with Pro
gram Writer ($42.45. Both for $59.95 + S&H). Love it or get
your money back! Inexpensive publishers' licenses.

LoadResource
- Dealerlnqu1neslnv1ted

And don't forget, of course, that LoadResource re
turns a handle to the resource. Be sure and check
for a nil handle, too, in case there was a problem.

Kitchen Sink Software, Inc
903 Knebworth Ct. Dept. 8
Westerville, OH 43081
(614) 891-2111

f

" ... the single most important business-oriented
product for the Apple II since Apple Works."

..:""""~ " -tl:!\.' ' "' ,gi!.¥P ·-~~:-'.·-"~·"'·"'· ... · ··· .•· · ···.· " •"• ·.·.·-:.::...-..:·:- - ~~-·-·.·- AIIf'-·-:.-~:~--'l."':'-:-:w:-7":':•'·'·"·:~>"":=:-·-·•·.·.·· · ""'-"'""""''''·':'·'""'"'~Mo:i~~~iiel;;
\, .• -·.··'-~--~-;;·~·- ·~:~: .. ,.1.:::,.-:•.·

···::
~

BY CHARLES H. GAJEWAY ;~·
~:
~-:
•' Masterful database. Are you

~· ready for a sweeping statement? Here
goes: I think that DB Master Profes·
sional (Stone Edge Technologies: $295)
is the single most important business
oriented product for the Apple IT since
the introduction of AppleWorks. As the
only true relational database program
for the Apple lle, Ilc, and IlGS, DBMP
can give a 128K Apple IT the kind of
data-handling power and flexibility nor
mally associated with MS-DOS and
Macintosh systems running expensive
and hard-to-learn software. (A relational
database can link, or relate, information

from several data files.)
I jumped right into the program with

my standard test data-a pair of files
that tracks a record collection, with in
formation on album titles, artists, mu
sic category, song lengths, and com
posers. This test is complex, and many
well-regarded programs- including
Apple Works-have failed miserably at
it. Even with very little experience, I
was able to get the system up and run
ning with DBMP in a surprisingly short
time.

Report generation is extremely pow
erful, making it easy to design anything
from a mailing label, to a point-of-sale
invoice (that automatically updates in
ventory records, of course), to custom
ized form letters. Whereas most data-

~ ! (... .

base programs must be combined with a
word processor to do complex reports or
mail merge, DBMP does it all.

The manuals are complete, well il
lustrated, and generally clear, although
they are sometimes overly technical and
fragmented. You will need to keep both
books handy at all times, especially as
you try out some of the more sophisti
cated features. And while the program
is operated with a simple menu system,
DBMP takes a fair amount of time to
learn because of its array of features and
options. DBMP gives you all the power
you need and can even import your
current files from Apple Works (except
version 3.0) and other programs. •

Reprinted with permission from
Home Office Computing.

Stone Edge Technologies, Inc. DB Master Professional P.O. Box 3200 • Maple Glen, PA 19002 • (215) 641-1825

GEKESYS
Now available and shipping!

Genesys TM •• • the premier resource creation, editing, and source code

generation tool for the Apple ll GS.

Genesys is the first Apple llGS CASE tool of its kind with an open

ended architecture, allowing for support of new resource types as Apple

Computer releases them by simply copying additional Genesys Editors

to a folder. Experienced programmers will appreciate the ability to

create their own style of Genesys Editors, useful for private resource

creation and maintenance. And Genesys generates fully commented

source code for ANY language supporting System 5.0. Using the

Genesys Source Code Generation Langugage (SCGL), the Genesys

user can tailor the source code generated to their individual tastes, and

also have the ability to generate source code for new languages, existing

or not.

Genesys allows creation and editing of resources using a WYSIWYG

environment. Easily create and edit windows, dialogs, menu bars,

menus menu items, strings of all types, all the new system 5.0 controls,

icons, cursors, alerts, and much more without typing, compiling, or

linking one single line of code.

The items created with Genesys can be saved as a resource fork or turned

into source code for just about any language. Genesys even allows you

to edit an existing program that makes use of resources.

Genesys is guaranteed to cut weeks, even months, off program develop

ment and maintenance. Since the interface is attached to the program,

additions and modifications take an instant effect.

Budding programmers will appreciate the ability to generate source

code in a variety of different languages, gaining an insight into

resources and programming in general. Non-programmers can use

Genesys to tailor programs that make use of resources. Renaming

menus and menu items, adding keyboard equivalents to menus and

controls, changing the shape and color of windows and controls, and

more. The possibilities are almost~!

Genesys is an indispensable tool for the programmer and non
programmer alike!

Retail Price: $150.00

SSSi is pleased to announce that we will be carrying the GS Sauce memory card by
Harris Laboratories. This card offers several unique features to Apple //gs owners:

Made in USA
Limited Lifetime Warranty
100% DMA compatable
100% GS/OS 5.0 and ProDOS 8 & 16 compatable
Installs in less than 15 seconds!
Low-power CMOS chips
Uses "snap-in" SIMMs modules - the same ones used on the Macintosh
Recycle your Macintosh SIMMs modules with GS Sauce.
Expandable from 256K to 4 Meg of extra DRAM

This card is 100% compatable with all GS software and GS operating systems. It
is 100% tested before shipping and has a lifetime warranty. The CMOS technol
ogy means that it consumes less power and produces less heat thus making it easier
on your //gs power supply. There are no jumpers, just simple to use switches to set
the memory configuration. One step installation takes less than 15 seconds.

Memory configurations:
Aj>ple ll&s model
256K (ROM 1)

add these:
(1) 256K SIMM
(2) 256K SIMMs
(4) 256K SIMMs
(1) 1 Meg SIMM
(2) 1 Meg SIMMs
(4) 1 Meg SIMMs

total GS RAM
512K
768K

1.25 Meg
1.25 Meg
2.25 Meg
4 .25 Meg

1 Meg (ROM 3) (1) 256K SIMM 1.25 Meg
(2) 256K SIMMs 1.50 Meg
(4) 256K SIMMs 1.78 Meg
(I) 1 Meg SIMM 2.0 Meg
(2) 1 Meg SIMMs 3.0 Meg
(4) 1 Meg SIMMs 5.0 Meg

Please note that you can not mix 256K and 1 Meg SIMMs packages on the same GS
Sauce card, and that expansion must be performed in (1), (2) or (4) SIMMs modules.

12i£i.!!g:
We are offering a limited time "get acquainted" offer to our customers. The GS
Sauce card is available from SSSi as:

OK $89.95 -use your own 256K or 1 Meg SIMMs modules
1 Meg $179.95
2 Meg $269.85
4 Meg $449.75

B" We are making a special offer to our Genesys users:

Buy Genesys and and get a coupon to purchase GS Sauce for:
OK $79.95 - use your own 256K or 1 Meg SIMMs modules
1 Meg $159.90
2 Meg $239.85
4 Meg $399.75

We hope you will see what an excellant value the GS Sauce card is: low power
consumption, SIMMs technology, inexpensive, made in USA and lifetime war
ranty!
Call or write for seperate 256K and 1 Meg SIMMs modules to upgrade your GS

Order by phone or by mail . Check-, money order, MasterCard, Visa and , •• ,.
American Express accepted. Please add $5.00 for SIH
Simple Software Systems International, Inc.

~~::~;;::Dr. (404) 928-4388

8/Jl6

•e .. •. , ·

• 8/16 on Disk •
We don't have the room to even come close to telling you what goes into the disk every single month. We
estimate that by the end of our first year we'll have delivered approximately 8 megabytes of source code,
utilities, articles, and other goodies for Apple II programmers. That works out to less than $9 per mega
byte. I think it is the deal of the century, but since I'm naturally quite biased, I thought I'd tell show you
the kind of feedback we're getting about it ...

"I have found it to be ajantastic investment: I've never had soooo much irifonnatton in one place before ... " -
Michael W. Faulkner, Berlin, Germany

"You guys are simply outdoing yourselves ... "- Robert Todoroff. St. Louis, MO

"I can't live without it!" - Robert Santos, Miami, FL

The magazine you are now holding in your hands is but a small subset of the material on the 8/16 disk.
We have combed the BBS's and data services across the country to collect the best of the public domain
and shareware offerings for programmers. Not only that, but we have extra articles and source code
written by our staff.

Highlights from the last four disks (so far every disk has had more than 600K of material!):

• Sept '90:

• Aug '90:

• July '90:

8 bit- Jerry Kindall's Generic Startup routines and the complete source code to
Karl Bunker's DOGPAW
16 bit- Jason Coleman's shareware resource editor, Ll..RE; Morgan Davis's universal
shell routines.

8 bit- Jerry Kindall's Generic Shutdown routines for assembly (this is GREAT); a
complete, working Forth language compiler (Uniforth); Ross's FN Local and FN
SetEOF for ZBasic programmers (A classic ... hehehe- guess who's writing this!)

16 bit- Doni Grande's extended keyboard code; Jay Jennings' extended control
routines; and- believe it or not- Nifty List v. 3.0, by Dave Lyons.

8 bit - the assembly source to Super Selector. which includes code to eject 3.5"
disks; the ZBasic code for DrawPoly.FN, a super neat, flexible DHR and hires poly
plotter; the demo to Shem the Penman's Guide to Interactive Fiction

16-bit- an updated Orca/APW shell command, COPY; Console Driver demo (with
source and an information file (this is neat!); Steven Lepisto's Illusions of Motion
Number Three.

• June '90: 8 bit- 3D graphics package, MicroDot™ Demo. DiskWorks, 80 column screen
editor.

16 bit- Assembly Source Code Converter (shareware). Install DA (on the fly;
by our our own Eric Mueller). Find File source code.

1 year- $69.95 6 months- $39.95 3 months - $21

Individual disks are $8.00 each. Non-North American orders add $15 for 1 year, 8$ for 6 months, and $5
for three months. All disks are shipped first class.

• Shem The Penman's Guide To Interactive Fiction •

This is undoubtedly my personal favorite of all our software offerings. First of all, it is FUN. Second of all it
is a very well organized, well written. and well programmed introduction to programming interactive
fiction. It is, in fact, the only package of its kind I've ever seen!

Author Chet Day is a professional writer (go buy The Hacker at your nearest book store!) and an educator
who is as conemed with the content of your interactive fiction program as with the form. This package is
fun, entertaining, and useful. It includes Applesoft, ZBasic, and Micol Advanced Basic "shells" which will
drive your creations - $39.95 (both 5 .25" or 3 .5" disks supplied). P.S. The advantage to the ZBasic and
Micol versions is that with the easy integration of text and graphics provided in those langauges, you can
easily load a graphic and overlay text in the appropriate spots.

• Back issues of The Sourceror's Apprentice •
Ross's Recommendations:

8 bit: Feb '89

16 bit: Jan '89

- Relocation Without Dislocation, by Karl Bunker
. .. techniques for writing relocatable 8 bit code
Jan, Mar, Apr, Aug '89- The Applesoft Connection Parts 1-4, by Jerry Kindall
... using the ampersand vector and intemal Applesoft routines. A classic series.
Jun '89 - Peeking at Auxiliary Memory: A Monitor Utility, by Matthew Neuberg
.. .lets the monitor display aux mem, an invaluable 128K programming tool.
Sep '89 - Getting More Value(s) From Your Game Port, Eric Soldan
. . .increase range of values retumed by a joystick for DHR coordinates, etc.

- Programming with Class 1, by Jay Jennings
... an introduction to GS/OS class 1 calls
Mar & Jun '89- Vectored Joystick Programming, by Stephen Lepisto
... a technique for increasing responsiveness in reading the joystick
July '89 - Making a List (and checking it twice). by Ross W. Lambert
... an introduction to the GS List Manager
Sep '89- Generic Start II, The Sequel. by Jay Jennings
... an introduction to the new start up song and dance for new system software
Jan '90 - Trapping Tricky Tool Errors, by Jay Jennings
... a classy programmer's error trap for the GS.

All back is sues are $3.00 each (postage and handling included except for non-North American orders.
Those of you on other shores please add $1.50 extra per issue).

Our guarantee: Ariel Publishing guarantees your satisfaction with our entire product line (software and
publications). If you are ever dissatisfied with one of our products, we will cheerfully refund the amount
you paid on your request.

Ordering Info:

To order , j u st write to: Ariel Publishing, Box 398, Pateros, WA 98846 or call (509) 923-2249. Our fax
n umber is (509) 689-3136.

We accept Visa. MC, personal checks, lOU's, institutional purchase orders (for those of you in institu
tions). RAM chips , TransWarp GS's , Apaloosa's, h ats from around the world, programming work, etc. Be
creative if you 're broke.

ApplesojfM Never
Looked So Good!
The Call Box TPSTM (Toolbox Programming System)
gives you the tools to look and sound your best. Make your
own Applesoft BASIC desktop applications which look and
sound like professional programs.

Over 1000 toolbox calls have been added tp Applesoft BASIC
which gives you, the BASIC programmer instant access to the
Apple Ilgs toolbox in a simple and flexible way. You can use
the Memory Manager, Miscellaneous Tools, Tool Locator,
Quickdraw II, Desk Manager, Event Manager, Scheduler,
Sound Manager, Desktop Bus, Text Tools, Window
Manager, Menu Manager, Control Manager, Quickdraw II
(aux.), Line Edit, Dialog Manager, Scrap Manager, Note
Synthesizer, Note Sequencer, A.C.E., Standard File and
much more. In addition to all the tool calls you have access to
ProDOS 16 and GS/OS commands at the same time that you
have access to ProD OS 8 commands. You can even load and
run relocatable shell applications from within the Call Box
BASIC environment.

The Call Box TPS includes the BASIC interface, WYSIWYG
Window, Dialog, Menu and Image editors, Disk and system
utilities plus demos and tutorials. The Call Box TPS comes on
3 - 3.5"disks with a 140+ page hard cover ring binder
manual. Requires 1 megabyte min. and GS/OS V5.0.2 min.
Call Box is supported by a programmers association which
provides its members with disks and documentation designed
to educate as well as illuminate.

The Call Box TPS $99.00

@ So What Software·

10221 Slater Ave. Suite 103 Fountain Valley, CA. 92708

(714) 964-4298 VISA/Mastercard accepted

Hired Guns
8/16 is providing a free service to all programmers
(who are subscribers!): placement of a
complimentary "situation wanted" ad. If you're
available for hire and looking for a programming
job (from full-time to freelance), a listing in this
directory is your ticket to work. The ads are open to
both 8 and 16 bit authors and are limited to 120
words or less. Be sure to give your address, phone
number, and email addresses, and specifY how
much of a job you're after (part-time? full-time?
royalty-based? etc). Send it to Situation Wanted,
c/o Ariel Publishing, Box 398, Pateros, WA 98846

David Ely. 4567 W. 159th St. Lawndale, CA 90260. 213-371-
4350 eves. or leave message. GEnie: [DDEL Y], AOL:
"DaveEiy". Experienced in 8 and 16 bit assembly, C, Forth and
BASIC. Available for hourly or flat fee contract work on all
Apple II platforms (llgs preferred). Have experience in writing
desktop and classical applications in 8 or 16 bit environments,
hardware and firmware interfacing, patching and program
maintenance. Will work individually or as a part if a group.

Jeff Holcomb, 18250 Marsh Ln, #515, Dallas, Tx 75287. (214)
306-0710, leave message. GEnie: [Applied.Eng], AOL: "AE
Jeff". I am looking for part-time work in my spare time. I prefer
16-bit programs but I am familiar with 8-bit. Strengths are
GS/OS, desktop applications, and sound programming. I have
also worked with hardware/firmware, desk accessories, CDevs,
and inits.

Tom Hoover, Rt 1 Box 362, Lorena, TX, 76655, 817-752-9731
(day), 817-666-7605 (night). GEnie: Tom-Hoover; AOL:
THoover; Pro-Beagle, Pro-APA, or Pro-Carolina: !hoover.
Interests/strengths are 8-bit utility programs, including
TimeOut(tm) applications, written in assembly language.
Looking for "part-time" work only, to be done in my spare time.

Jay Jennings, 14-9125 Robinson #2A, Overland Park, KS,
66212. (913) 642-5396 late evenings or early mornings. GEnie:
[A2.JAY] or [PUNKWARE]. Apple Jigs assembly language
programmer. Looking for short term projects, typically 2-4
weeks. Could be convinced to do longer projects in some
cases. Familiar with console, modem, and network
programming, desk accessories, programming utilities, data
bases, etc. GS/OS only. No DOS 3.3 and no 8-bit (unless the
money is extremely good and there's a company car involved).

Jim Lazar, 1109 Niesen Road, Port Washington, Wl53074,
414-284-4838 nights, 414-781 -6700 days. AOL: "WinkieJim",
GEnie: [WINKIEJIM]. Strengths include: GS/OS and ProDOS 8
work, desktop applications, CDAs, NDAs, IN ITs. Prefer working
in 6502 or 65816 Assembly.

8/Jl(f))

Have experience with large and small programs, utilities,
games, disk copy routines and writing documentation. Nibble,
inCider and Caii-A.P.P.L.E. have published my work. Prefer 16-
bit, but will do 8-bit work. Type of work depends on the
situation, would consider full-time for career move/benefits,
otherwise 25 hrs/month (flexible).

Stephen P. Lepisto, 12907 Strathern St., N. Hollywood, CA
91605, 818-503-2939. GEnie: S.LEPISTO. Available for full
time and part-time contract work (flat rate or royalties).
Experienced in 6502 to 65816 assembly, BASIC and C. Can
work in these or quickly learn new languages and hardware
(some experience with UNIX, MS-DOS, 8086 assembly).
Experience in games, utilities, educational, applications. Lots of
experience in porting programs to Apples. Programmed Hacker
II (64k Apple II), Labyrinth (128k Apple), Firepower GS and
others. Can also write technical articles.

Chris McKinsey, 3401 Alder Drive, Tacoma, WA, 98439, 206-
588-7985, GEnie: C.MCKINSEY. Experience in programming
16-bit (65c816) games. Strengths include complex super hi-res
animation, sound work (digitized and sequenced), and
firmware. Looking for new llgs game to develop or tO port
games from other computers to the llgs.

Eric Mueller, 2760 Roundtop Drive, Colorado Springs, CO,
80918, 719-548-8295 anytime. GEnie: [A2PRO.ERIC], CIS:
73567,1656, AO: "A2Pro Eric". Strengths include GS/OS and
ProDOS 8 work, console, and modem l/0, working with
hardware/firmware, desktop applications, desk accessories.
Can also do tool patches, IN ITs, whatever. Don't call me for
complex animation or sound work. Have experience working
with others on programs, and on large applications. References
available. Prefer 16 bit stuff always. Looking for _very_ small
(less than 25 hrs/month) jobs right now.

Bryan Pietrzak, 4313 West 207th St, Matteson, II, 60443,
(708) 748-6363, or (217) 356-4351. GEnie: B.PIETRZAK1.
Strengths include database design and data structures
(hashing, etc) and Continued on p. 43

Lane Roath, Ideas From the Deep, 309 Oak Ridge Lane,
Haughton, LA 71037. (318) 949-8264 (leave message with
phone number!) or (318) 221 -5134 (work). GEnie: L.Roath,
Delphi: LRoath. Available for part time work, large or small for
any of the Apple II line, especially the llgs. Specializing in disk
1/0 graphics and application programming. Wrote Dark Castle
GS, Disk Utility Package, WordWorks WP, Project Manager,
DeepDOS, LaneDOS, etc. including documentation. Currently
work for Softdisk G-S. Work only in Assembler.

Steve Stephenson (Synesis Systems), 2628 E. Isabella,
Mesa, AZ, 85204, 602-926-8284, anytime. GEnie: (S
STEPHENSON], AOL: "Steve S816". Available for projects
large or small on contract and/or royalty basis. Experienced in
programming all Apple II computers (prefer IIGS),
documentation writing/editing and project management. Have
expertise in utilities, desk accessories, drivers, diagnostics,
patching, modifying, and hardware level interfacing. Willing to
maintain or customize your existing program. Work only in

assembly language. Authored SQUIRT and Checkmate
Technology's AppleWorks Expander, managed the
ProTERM(tm) project, and co-invented MemorySaver(tm)
[patent pending].

Jonah Stich, 6 Lafayette West, Princeton, NJ, 08540. (609)
683-1396, after 3:30 or on weekends. America Online
(preferred): JonahS; GEnie: J.STICH1; InterNET:
jonah@amos.ucsd.edu. Have been programming Apples for 7
years, and can speak Assembly (primary language), C, and
Pascal. Currently working on the GS, extremely skilled in
graphics, animation, and sound, as well as all aspects of
toolbox programming. Prefer to work alone or with one or two
others. Can spend about 125 hours a month on projects.

Loren W. Wright, 6 Addison Road, Nashua, NH 03062, (603)-
891-2331 . GEnie: [L.WRIGHT2]. Lots of experience in 6502
assembly, BASIC, C, Pascal, and PLM on a wide variety of
machines: Apple II, llgs, C64, VIC20, PET, Wang OIS. Some
llgs desktop pmgramming. Have done several C64<>Apple
program conversions. Numerous articles and regular columns
in Nibble and MICRO magazines. Product reviews and beta
testing. Specialties include user interface, graphics, and printer
graphics. Looking for full-time work in New England and/or at
home contract work.

The Sensational Lasers
Apple lle/llc Compatible

$345s~7t~~1ee~r~g~e;,s!
._.. Now Includes

COPY II PLUS®

The Laser 128<1'> features full Apple® II compatibility with an internal disk drive, serial, parallel, modem. and
mouse ports. When you're ready to expand your system, there 's an external onve port and expans1on slot. The
Laser 128 even Includes 10 free software programs' Take advantage of th1s ex•;ept1onal value today $345

Super High Speed Option!

only $385
The LASER 128EX has all the features of the
LASER 128, plus a triple speed processor and
memory expansion to 1MB $385.00

The LASER 128EX/2 has all the features of the
LASER 128EX, plus MIDI, Clock and Daisy
Chain Drive Controller $420.00

DISK DRIVES
* 5.25 LASER/ Apple 11 c $ 99.00
* 5.25 LASER/Apple 11e $ 99.00
* 3.50 LASER/ Apple BOOK $179.00
* 5.25 LASER Daisy Chain ... ~$109.00
* 3.50 LASER Daisy Chain .. . ~$179.00

USA MICRO

Save Money by Buying
a Complete Packagel

THE STAR a LASER 128 Computer with 12"
Monochrome Monitor and the LASER 145E
Printer $620.00

THE SUPERSTAR a LASER 128 Computer with
14" RGB Color Monitor and the LASER 145E
Printer $785.00

ACCESSORIES
• 12" Monochrome Monitor $ 89.00
• 14" RGB Color Monitor $249.00
* LASER 190E Printer $219.00
* LASER 145E Printer ~$189.00
• Mouse $ 59.00
• Joystick (3) Button $ 29.00
• 1200/2400 Baud Modem Auto $129.00

YOUR DIRECT SOURCE FOR APPLE
AND IBM COMPATIBLE COMPUTERS

BULK RATE
U.S. POSTAGE

PAID
PATEROS, WA
PERMIT NO.7

http://apple2scans.net

	8/16 - Safe X (CMDs) for HyperStudio
	The Publisher's Pen - Ross W. Lambert
	IIGS Programming: Everything You Ever Wanted to Know About X (CMDS) (but were afraid to ask) - Eric Mueller
	BASICally Applesoft: ProDOS Power from Applesoft - Jerry Kindall
	OverScan by David Kopper
	Letters
	VaporWare - Murphy Sewall
	Insecticide
	From the House of Ariel
	Hired Guns

